Author

Oren Bochman

Published

Friday, December 20, 2024

import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread

tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.float16)
model = model.to('cuda:0')

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [29, 0]
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

def predict(message, history):
    history_transformer_format = history + [[message, ""]]
    stop = StopOnTokens()

    messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]])
                for item in history_transformer_format])

    model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=True,
        top_p=0.95,
        top_k=1000,
        temperature=1.0,
        num_beams=1,
        stopping_criteria=StoppingCriteriaList([stop])
        )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    partial_message = ""
    for new_token in streamer:
        if new_token != '<':
            partial_message += new_token
            yield partial_message

gr.ChatInterface(predict).launch()
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Running on local URL:  http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.

Citation

BibTeX citation:
@online{bochman2024,
  author = {Bochman, Oren},
  title = {Gradio Local Model},
  date = {2024-12-20},
  url = {https://orenbochman.github.io/posts/2024/2024-03-31-gradio/gradio_local.html},
  langid = {en}
}
For attribution, please cite this work as:
Bochman, Oren. 2024. “Gradio Local Model.” December 20, 2024. https://orenbochman.github.io/posts/2024/2024-03-31-gradio/gradio_local.html.