P.1 Bibliography
Agresti, A. 2012. Categorical Data Analysis. Wiley Series in
Probability and Statistics. Wiley.
Aldous, David J. 1983. “Random Walks on Finite Groups and Rapidly
Mixing Markov Chains.” In Séminaire de
Probabilités XVII 1981/82: Proceedings, 243–97.
Springer.
Aldrich, John. 2008. “R. A. Fisher on Bayes and Bayes’
Theorem.” Bayesian Analysis 3 (March). https://doi.org/10.1214/08-BA306.
Autolatry. 2015. “Why Square Brackets for Expectation.”
Mathematics Stack Exchange. https://math.stackexchange.com/q/1302543.
Banerjee, S., A. E. Gelfand, and B. P. Carlin. 2026. Hierarchical
Modeling and Analysis for Spatial Data. CRC Press LLC.
Battaglia, Tobias Gerstenberg, Tomer D Ullman, and B Joshua. n.d.
“Intuitive Physics as Probabilistic Inference Kevin a. Smith,
Jessica b. Hamrick, Adam n. Sanborn, Peter w.”
Bayesian Nonparametrics. 2010. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press.
Belsley, David A., Edwin Kuh, and Roy E. Welsch. 1980. Regression
Diagnostics. John Wiley & Sons, Inc. https://doi.org/10.1002/0471725153.
Bernoulli, J. 1713. Ars Conjectandi [the Art of Conjecturing].
Impensis Thurnisiorum.
Bishop, C. M. 2006. Pattern Recognition and Machine Learning.
Information Science and Statistics. Springer (India) Private Limited. https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.
Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra. 2015. “Weight Uncertainty in Neural Networks.” https://doi.org/10.48550/ARXIV.1505.05424.
Bressoud, D. M. 2008. A Radical Approach to Lebesgue’s Theory of
Integration. Classroom Resource Materials. Cambridge University
Press.
Brockwell, Peter J, and Richard A Davis. 1991. Time Series: Theory
and Methods. Springer science & business media.
Broemeling, Lyle D. 2019. Bayesian Analysis of Time Series. CRC
Press.
Carlin, B. P., and T. A. Louis. 2008. Bayesian Methods for Data
Analysis. Chapman & Hall/CRC Texts in Statistical Science. CRC
Press.
Casella, G., and R. L. Berger. 2002. Statistical Inference.
Duxbury Advanced Series in Statistics and Decision Sciences. Thomson
Learning. http://home.ustc.edu.cn/~zt001062/MaStmaterials/George%20Casella&Roger%20L.Berger--Statistical%20Inference.pdf.
Chen, J. 2023. Statistical Inference Under Mixture Models. ICSA
Book Series in Statistics. Springer Nature Singapore.
Cook, R. Dennis. 1977. “Detection of Influential Observation in
Linear Regression.” Technometrics 19 (1): 15. https://doi.org/10.2307/1268249.
Cowpertwait, P. S. P., and A. V. Metcalfe. 2009. Introductory Time
Series with r. Use r! Springer New York.
Cressie, N., and C. K. Wikle. 2011. Statistics for Spatio-Temporal
Data. CourseSmart Series. Wiley.
Davidson-Pilon, Cameron. 2015. Bayesian Methods for Hackers:
Probabilistic Programming and Bayesian Inference. Addison-Wesley
Data & Analytics Series. Pearson Education.
Dempster, Arthur P, Nan M Laird, and Donald B Rubin. 1977.
“Maximum Likelihood from Incomplete Data via the EM
Algorithm.” Journal of the Royal Statistical Society: Series
B (Methodological) 39 (1): 1–22.
Diaconis, Persi, and David Freedman. 1980. “De Finetti’s Theorem
for Markov Chains.” The Annals of Probability, 115–30.
Durbin, J. 1960. “The Fitting of Time-Series Models.”
Revue de l’Institut International de Statistique / Review of the
International Statistical Institute 28 (3): 233–44. http://www.jstor.org/stable/1401322.
Durbin, James, and Siem Jan Koopman. 2012. Time Series Analysis by
State Space Methods. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199641178.001.0001.
Ebbinghaus, H. D., and J. H. Ewing. 1991. Numbers. Graduate
Texts in Mathematics. Springer New York.
ENGEN, STEINAR. 1975. “A Note on the Geometric Series as a Species
Frequency Model.” Biometrika 62 (3): 697–99. https://doi.org/10.1093/biomet/62.3.697.
Escobar, Michael D, and Mike West. 1995. “Bayesian Density
Estimation and Inference Using Mixtures.” Journal of the
American Statistical Association 90 (430): 577–88.
Ewens, W. J. 1972. “The Sampling Theory of Selectively Neutral
Alleles.” Theoretical Population Biology 3 (1): 87–112.
https://doi.org/https://doi.org/10.1016/0040-5809(72)90035-4.
———. 1990. “Population Genetics Theory - the Past and the
Future.” In Mathematical and Statistical Developments of
Evolutionary Theory, edited by Sabin Lessard, 177–227. Dordrecht:
Springer Netherlands. https://doi.org/10.1007/978-94-009-0513-9_4.
Ferguson, Thomas S. 1973. “A Bayesian Analysis of Some
Nonparametric Problems.” The Annals of Statistics,
209–30.
Finetti, Bruno de. 1937. “La Prévision: Ses Lois Logiques, Ses
Sources Subjectives.” Annales de l’Institut Henri
Poincaré 7 (1): 1–68.
———. 2017. “Theory of Probability.” Edited by Antonio Machí
and Adrian Smith. Wiley Series in Probability and Statistics,
January. https://doi.org/10.1002/9781119286387.
Fisher, R. A. 1925. Statistical Methods for Research Workers.
1st ed. Edinburgh Oliver & Boyd.
Fox, Emily, Michael Jordan, Erik Sudderth, and Alan Willsky. 2009.
“Sharing Features Among Dynamical Systems with Beta
Processes.” In Advances in Neural Information Processing
Systems, edited by Y. Bengio, D. Schuurmans, J. Lafferty, C.
Williams, and A. Culotta. Vol. 22. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2009/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf.
Fox, Emily, Erik B Sudderth, Michael I Jordan, and Alan S Willsky. 2011.
“Bayesian Nonparametric Inference of Switching Dynamic Linear
Models.” IEEE Transactions on Signal Processing 59 (4):
1569–85.
Fox, Kieran C. R., Savannah Nijeboer, Matthew L. Dixon, James L. Floman,
Melissa Ellamil, Samuel P. Rumak, Peter Sedlmeier, and Kalina Christoff.
2014. “Is Meditation Associated with Altered Brain Structure? A
Systematic Review and Meta-Analysis of Morphometric Neuroimaging in
Meditation Practitioners.” Neuroscience & Biobehavioral
Reviews 43: 48–73. https://doi.org/https://doi.org/10.1016/j.neubiorev.2014.03.016.
Frazier, Peter I. 2018. “A Tutorial on Bayesian
Optimization.” https://arxiv.org/abs/1807.02811.
Fruhwirth-Schnatter, S., G. Celeux, and C. P. Robert. 2019. Handbook
of Mixture Analysis. Chapman & Hall/CRC Handbooks of Modern
Statistical Methods. CRC Press.
Frühwirth-Schnatter, S. 2006. Finite Mixture and Markov Switching
Models. Springer Series in Statistics. Springer New York.
Garnett, R. 2023. Bayesian Optimization. Cambridge University
Press. https://github.com/bayesoptbook/bayesoptbook.github.io.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis, Third
Edition. Chapman & Hall/CRC Texts in Statistical Science.
Taylor & Francis.
Gelman, Andrew, and Jennifer Hill. 2006. Data Analysis Using
Regression and Multilevel/Hierarchical Models. Analytical Methods
for Social Research. Cambridge University Press.
Gelman, Andrew, Aleks Jakulin, Maria Grazia Pittau, and Yu-Sung Su.
2008. “A Weakly Informative Default Prior Distribution for
Logistic and Other Regression Models.” The Annals of Applied
Statistics 2 (4). https://doi.org/10.1214/08-aoas191.
Geman, Stuart, and Donald Geman. 1984. “Stochastic Relaxation,
Gibbs Distributions, and the Bayesian Restoration of Images.”
IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-6 (6): 721–41. https://doi.org/10.1109/tpami.1984.4767596.
Ghosal, Subhashis, Jayanta K Ghosh, and RV Ramamoorthi. 1999.
“Posterior Consistency of Dirichlet Mixtures in Density
Estimation.” The Annals of Statistics 27 (1): 143–58.
Ghosh, Joyee, Yingbo Li, and Robin Mitra. 2018. “On the Use of
Cauchy Prior Distributions for Bayesian Logistic Regression.”
Bayesian Analysis 13 (2). https://doi.org/10.1214/17-ba1051.
Golan, J. S. 2012. The Linear Algebra a Beginning Graduate Student
Ought to Know. Mathematics and Statistics. Springer Netherlands.
Gramacy, Robert B. 2020. Surrogates: Gaussian Process Modeling,
Design, and Optimization for the Applied Sciences. Chapman &
Hall/CRC the r Series. CRC Press. https://bookdown.org/rbg/surrogates/.
Hairer, E., and G. Wanner. 2008. Analysis by Its History.
Undergraduate Texts in Mathematics. Springer New York.
Härdle, Wolfgang Karl, and Léopold Simar. 2019. Applied Multivariate
Statistical Analysis. Springer International Publishing. https://doi.org/10.1007/978-3-030-26006-4.
Hartl, D. L., and A. G. Clark. 2006. Principles of Population
Genetics. Oxford University Press. https://books.google.co.il/books?id=V-tc0AEACAAJ.
Harvey, A. C. 1990. Forecasting, Structural Time Series Models and
the Kalman Filter. Cambridge University Press.
Hewitt, Edwin, and Leonard J Savage. 1955. “Symmetric Measures on
Cartesian Products.” Transactions of the American
Mathematical Society 80 (2): 470–501.
Hinton, G. E., S. Osindero, and Y. W. Teh. 2006. “A Fast Learning
Algorithm for Deep Belief Networks.” Neural Computation
18 (7): 1527–54.
Hobbs, N. Thompson, and Mevin B. Hooten. 2015. Bayesian Models: A
Statistical Primer for Ecologists. STU - Student edition. Princeton
University Press. http://www.jstor.org/stable/j.ctt1dr36kz.
Hoff, Peter D. 2009. A First Course in Bayesian Statistical
Methods. Springer New York. https://doi.org/10.1007/978-0-387-92407-6.
Ishwaran, Hemant, and Lancelot F James. 2001. “Gibbs Sampling
Methods for Stick-Breaking Priors.” Journal of the American
Statistical Association 96 (453): 161–73.
Jackman, Simon. 2009. “Bayesian Analysis for the Social
Sciences.” Wiley Series in Probability and Statistics,
October. https://doi.org/10.1002/9780470686621.
James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An
Introduction to Statistical Learning: With Applications in r.
Springer Texts in Statistics. Springer New York.
Jeffreys, H. 1983. Theory of Probability. International Series
of Monographs on Physics. Clarendon Press.
Jin, Qian, Li-Jun He, and Ai-Bing Zhang. 2012. “A Simple 2D
Non-Parametric Resampling Statistical Approach to Assess Confidence in
Species Identification in DNA Barcoding—an Alternative to Likelihood and
Bayesian Approaches.” PLoS One 7 (12): e50831.
Johnson, R. A., and D. W. Wichern. 2001. Applied Multivariate
Statistical Analysis. Pearson Modern Classics for Advanced
Statistics Series. Prentice Hall.
Kallenberg, Olav. 1997. Foundations of Modern Probability.
Springer.
Kalman, Rudolph Emil. 1960. “A New Approach to Linear Filtering
and Prediction Problems.”
Kingman, J. F. C. 1978. “The Representation of Partition
Structures.” Journal of the London Mathematical Society
s2-18 (2): 374–80.
Kingman, John. 1967. “Completely Random Measures.”
Pacific Journal of Mathematics 21 (1): 59–78.
Kruschke, John K. 2011. Doing Bayesian Data Analysis: A Tutorial
with R and BUGS. Burlington, MA: Academic
Press. http://www.amazon.com/Doing-Bayesian-Data-Analysis-Tutorial/dp/0123814855.
Lee, H. K. H. 2004. Bayesian Nonparametrics via Neural
Networks. ASA-SIAM Series on Statistics and Applied Probability.
Society for Industrial; Applied Mathematics (SIAM, 3600 Market Street,
Floor 6, Philadelphia, PA 19104). https://books.google.co.il/books?id=PoZFyNgitIYC.
Levinson, Norman. 1946. “The Wiener (Root Mean Square) Error
Criterion in Filter Design and Prediction.” Journal of
Mathematics and Physics 25 (1-4): 261–78. https://doi.org/https://doi.org/10.1002/sapm1946251261.
Lloyd, James, Peter Orbanz, Zoubin Ghahramani, and Daniel M Roy. 2012.
“Random Function Priors for Exchangeable Arrays with Applications
to Graphs and Relational Data.” In Advances in Neural
Information Processing Systems, edited by F. Pereira, C. J. Burges,
L. Bottou, and K. Q. Weinberger. Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2012/file/df6c9756b2334cc5008c115486124bfe-Paper.pdf.
Lunn, D., C. Jackson, N. Best, A. Thomas, and D. Spiegelhalter. 2012.
The BUGS Book: A Practical Introduction to Bayesian Analysis.
Chapman & Hall/CRC Texts in Statistical Science. Taylor &
Francis.
Martin, Osvaldo A., Ravin Kumar, and Junpeng Lao. 2021. Bayesian Modeling and Computation in Python.
Boca Raton.
McCloskey, J. W. 1965. A Model for the Distribution of Individuals
by Species in an Environment. Michigan State University. Department
of Statistics. https://books.google.co.il/books?id=G9YOYAAACAAJ.
McElreath, Richard. 2015. Statistical Rethinking, a Course in r and
Stan.
McKinney, Wes. 2022. Python for Data Analysis: Data Wrangling with
Pandas, NumPy, and Jupyter. 3rd ed. O’Reilly Media.
McLachlan, G. J., and D. Peel. 2004. Finite Mixture Models.
Wiley Series in Probability and Statistics. Wiley.
Miller, Jeffrey W, and Matthew T Harrison. 2018. “Mixture Models
with a Prior on the Number of Components.” Journal of the
American Statistical Association 113 (521): 340–56.
Miller, Kurt, Michael Jordan, and Thomas Griffiths. 2009.
“Nonparametric Latent Feature Models for Link Prediction.”
In Advances in Neural Information Processing Systems, edited by
Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta. Vol.
22. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2009/file/437d7d1d97917cd627a34a6a0fb41136-Paper.pdf.
Moivre, Abraham De. 1718. The Doctrine of Chances. H. Woodfall.
https://tellingstorieswithdata.com.
Morita, Satoshi, Peter F Thall, and Peter Müller. 2008.
“Determining the Effective Sample Size of a Parametric
Prior.” Biometrics 64 (2): 595–602.
Nielsen, A. 2019. Practical Time Series Analysis: Prediction with
Statistics and Machine Learning. O’Reilly Media.
Ostermann, A., and G. Wanner. 2012. Geometry by Its History.
Undergraduate Texts in Mathematics. Springer Berlin Heidelberg.
Patil, G. P., and C. Taillie. 1982. “Diversity as a Concept and
Its Measurement.” Journal of the American Statistical
Association 77 (379): 548–61. http://www.jstor.org/stable/2287709.
Pearson, E. S., W. S. Gosset, R. L. Plackett, and G. A. Barnard. 1990.
Student: A Statistical Biography of William Sealy Gosset.
Clarendon Press.
Petris, G., S. Petrone, and P. Campagnoli. 2009. Dynamic Linear
Models with r. Use r! Springer New York. https://link.springer.com/book/10.1007/b135794.
Pfaff, B. 2008. Analysis of Integrated and Cointegrated Time Series
with r. Use r! Springer New York.
Poisson, S. -D. 2019. “English Translation of Poisson’s
"Recherches Sur La Probabilité Des Jugements En Matière Criminelle Et En
Matière Civile" / "Researches into the Probabilities of Judgements in
Criminal and Civil Cases".” https://arxiv.org/abs/1902.02782.
Polya, G. 1945. How to Solve It. Princeton University Press. https://doi.org/10.1515/9781400828678.
Prado, Raquel, Gabriel Huerta, and Mike West. 2000. “Bayesian
Time-Varying Autoregressions: Theory, Methods and Applications.”
Resenhas Do Instituto de Matemática e
Estatı́stica Da Universidade de São Paulo
4 (4): 405–22. https://www2.stat.duke.edu/~mw/MWextrapubs/Prado2001.pdf.
Prado, R., M. A. R. Ferreira, and M. West. 2023. Time Series:
Modeling, Computation, and Inference. Chapman & Hall/CRC Texts
in Statistical Science. CRC Press.
Ramsey, Frank P. 1926. “Truth and Probability.” In The
Foundations of Mathematics and Other Logical Essays, edited by R.
B. Braithwaite, 156–98. McMaster University Archive for the History of
Economic Thought. https://EconPapers.repec.org/RePEc:hay:hetcha:ramsey1926.
Rasmussen, Carl Edward, and Christopher K. I. Williams. 2006.
Gaussian Processes for Machine Learning. Adaptive Computation
and Machine Learning Series. MIT Press. https://gaussianprocess.org/gpml/.
Ravishanker, N., B. Raman, and R. Soyer. 2022. Dynamic Time Series
Models Using r-INLA: An Applied Perspective. CRC Press.
Remmert, R., and R. B. Burckel. 2012. Theory of Complex
Functions. Graduate Texts in Mathematics. Springer New York.
Rios Insua, David, Fabrizio Ruggeri, and Michael P Wiper. 2012.
Bayesian Analysis of Stochastic Process Models. John Wiley
& Sons.
Saria, Suchi, Anand K. Rajani, Jeffrey Gould, Daphne Koller, and Anna A.
Penn. 2010. “Integration of Early Physiological Responses Predicts
Later Illness Severity in Preterm Infants.” Science
Translational Medicine 2 (48): 48ra65–65. https://doi.org/10.1126/scitranslmed.3001304.
Särkkä, S. 2013. Bayesian Filtering and Smoothing. Bayesian
Filtering and Smoothing. Cambridge University Press. https://books.google.co.il/books?id=5VlsAAAAQBAJ.
Schott, James R. 2016. Matrix Analysis for Statistics. Wiley
Series in Probability and Statistics. Wiley.
Sethuraman, Jayaram. 1994. “A Constructive Definition of Dirichlet
Priors.” Statistica Sinica, 639–50.
Sheather, Simon. 2009. A Modern Approach to Regression with r.
Springer New York. https://doi.org/10.1007/978-0-387-09608-7.
Spanos, A. 2019. Probability Theory and Statistical Inference.
Cambridge University Press.
Spiegelhalter, David J., Nicola G. Best, Bradley P. Carlin, and Angelika
Van Der Linde. 2002. “Bayesian Measures of Model Complexity and
Fit.” Journal of the Royal Statistical Society Series B:
Statistical Methodology 64 (4): 583–639. https://doi.org/10.1111/1467-9868.00353.
Storch, H. von, and F. W. Zwiers. 2002. Statistical Analysis in
Climate Research. Cambridge University Press.
Teh, Y. W. 2006. “A Hierarchical Bayesian Language
Model Based on Pitman-Yor Processes.”
In Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics, 985–92. http://www.aclweb.org/anthology/P/P06/P06-1124.
Teh, Y. W., and M. I. Jordan. 2010. “Hierarchical
Bayesian Nonparametric Models with Applications.” In
Bayesian Nonparametrics: Principles and Practice, edited by N.
Hjort, C. Holmes, P. Müller, and S. Walker. Cambridge University Press.
https://www.stats.ox.ac.uk/~teh/research/npbayes/TehJor2010a.pdf.
Theodoridis, S. 2015. Machine Learning: A Bayesian and Optimization
Perspective. Elsevier Science.
Trench, William F. 1964. “An Algorithm for the Inversion of Finite
Toeplitz Matrices.” Journal of the Society for Industrial and
Applied Mathematics 12 (3): 515–22. http://ramanujan.math.trinity.edu/wtrench/research/papers/TRENCH_RP_6.PDF.
VanderPlas, Jake. 2016. Python Data Science Handbook: Essential
Tools for Working with Data. 1st ed. O’Reilly Media, Inc. https://jakevdp.github.io/PythonDataScienceHandbook/.
Visser, I., and M. Speekenbrink. 2022. Mixture and Hidden Markov
Models with r. Use r! Springer International Publishing.
Walker, Gilbert Thomas. 1931. “On Periodicity in Series of Related
Terms.” Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character 131
(818): 518–32. https://doi.org/10.1098/rspa.1931.0069.
Wasserman, L. 2006. All of Nonparametric Statistics. Springer
Texts in Statistics. Springer New York. https://books.google.co.il/books?id=MRFlzQfRg7UC.
Weckerle, Melissa. 2022. “Statistics
professor wins prestigious professional statistics society award
Baskin School of Engineering.” https://engineering.ucsc.edu/news/statistics-professor-wins-zellner-medal.
West, M., and J. Harrison. 2013. Bayesian Forecasting and Dynamic
Models. Springer Series in Statistics. Springer New York.
Wiesenfarth, Manuel, and Silvia Calderazzo. 2020. “Quantification
of Prior Impact in Terms of Effective Current Sample Size.”
Biometrics 76 (1): 326–36. https://doi.org/https://doi.org/10.1111/biom.13124.
Wikipedia contributors. 2023a. “68–95–99.7 Rule —
Wikipedia.” https://en.wikipedia.org/w/index.php?title=68%E2%80%9395%E2%80%9399.7_rule.
———. 2023b. “Functional (Mathematics) —
Wikipedia, the Free Encyclopedia.” https://en.wikipedia.org/w/index.php?title=Functional_(mathematics)&oldid=1148699341.
———. 2024a. “Autoregressive Model —
Wikipedia, the Free Encyclopedia.” https://en.wikipedia.org/w/index.php?title=Autoregressive_model&oldid=1233171855#Estimation_of_AR_parameters.
———. 2024b. “Levinson Recursion —
Wikipedia, the Free Encyclopedia.” https://en.wikipedia.org/w/index.php?title=Levinson_recursion&oldid=1229942891.
———. 2025. “Wold’s Theorem — Wikipedia,
the Free Encyclopedia.” https://en.wikipedia.org/w/index.php?title=Wold%27s_theorem&oldid=1295347901.
Wikle, C. K., A. Zammit-Mangion, and N. Cressie. 2019.
Spatio-Temporal Statistics with r. Chapman & Hall/CRC the r
Series. CRC Press.
Wood, F., J. Gasthaus, C. Archambeau, L. James, and Y. W. Teh. 2011.
“The Sequence Memoizer.” Communications of the
Association for Computing Machines 54 (2): 91–98.
Yao, W., and S. Xiang. 2024. Mixture Models: Parametric,
Semiparametric, and New Directions. Chapman & Hall/CRC
Monographs on Statistics and Applied Probability. CRC Press.
Yule, George Udny. 1927. “VII. On a Method of Investigating
Periodicities Disturbed Series, with Special Reference to Wolfer’s
Sunspot Numbers.” Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or
Physical Character 226 (636-646): 267–98. https://doi.org/10.1098/rsta.1927.0007.
Zohar, Shalhav. 1969. “Toeplitz Matrix Inversion: The Algorithm of
w. F. Trench.” J. ACM 16: 592–601. https://api.semanticscholar.org/CorpusID:3115290.