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Language is changing!

Letter from Isaac Newton in 1672. 

Letter from Wilbur Wright 1899



• Changes in the world 
○ ∅ -> email, radiogram -> ∅ 

• Laziness/efficiency (Gibson 2019) 
○ telephone -> phone 

• Emphasis/clarity 
○ he/heo/hi -> he/she/they 

• Politeness 
○ https://developers.google.com/style/word-list  

• Misunderstanding 
○ bead: prayer -> small ball 

• Group identity/prestige (Danescu-Niculescu-Mizil et al. 2013) 
○ aroma -> smell 

• Structural reasons 
○ regularity in phonetics, morphology

Why do languages change?
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(Trask 2010)

https://developers.google.com/style/word-list
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Cognates

https://www.mentalfloss.com/article/68281/evolution-two-indo-european-language-family



orchestra オーケストラ
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Loan Words

カラオケ
"empty - orche"karaoke
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Loan Words in Chinese

क्षण kṣaṇa
pron.Sanskrit

刹那

Chinese
instant

meaning
chànà
pron.

बिम्बा bimbā 苹果 applepíngguǒ

coffee
English

咖啡

Chinese
kāfēi
pron.

t-shirt T恤衫



• Language contact is the use of more 
than one language in the same place 
at the same time (Thomason ‘95) 

• Major driving factor behind language 
change

Language contact
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• Swahili - major language in 
southeast Africa, 100M 
speakers 

• 800 A.D.-1920 Indian Ocean  
trading 

• Influence of Islam 

• ~40% of Swahili types are 
borrowed from Arabic (Johnson 
‘39)

Arabic--Swahili
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• Not by chance! Resources associated with reach/social 
influence

Lexical borrowing is pervasive in languages
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• How to bridge across languages? 

• Identify words that are orthographically or phonetically 
similar across different languages and are likely to be 
mutual translations

Cross-lingual lexical similarities
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• Core-periphery lexicon structure (Itô & Mester ‘95) 

• English:  
○ Core (20%–33%): beer, bread 
○ Assimilated: cookie, sugar, coffee, orange 
○ Peripheral: New York, Luxembourg

Lexicon structure
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How to bridge across languages?



Cross-lingual Lexical Learning
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Mapping lexicons across languages
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Cross-lingual lexicon induction



• FSTs Knight & Graehl ‘98 

• LSTMs with attention  
Rosca & Breuel’16  

• Exact Hard Monotonic 
Attention for Character-
Level Transduction Wu & 
Cotterell’19 

Transliteration models
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Intrinsic evaluation  

• Word accuracy in top-1 

• Fuzziness in top-1 (mean F-score) 

• Ranking; Mean Reciprocal Rank (MRR), Mean Average Precision (MAP) 

Downstream evaluation 

• Machine translation 

• Cross-lingual information extraction

Transliteration evaluation 
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• 1.6M named entities across 180 languages aggregated 
across multiple public datasets 

Transliteration resources
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Cognates and loanwords
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Arabic--Swahili borrowing examples

English Arabic 
Semitic

Swahili 
Bantu

Phonological & morphological integration

fever حمى 
ḥummat homa

* syllable structure adaptation: CV, CVV, CVC, CVCC → V, CV 
* degemination - Swahili does not allow consonant clusters 
* vowel substitution

minister الوزیر 
Alwzyr kiuwaziri

* Arabic morphology (optionally) drops 
* Swahili morphology is applied 
* vowel epenthesis to keep syllables open 
* vowel substitution

palace القصر 
AlqSr kasiri

* consonant adaptation: /tˤ/→/t/, /dˤ/→/d/, /θ/→/s/, /x/→/k/, 
etc 
* vowel epenthesis



• Case studies of lexical borrowing in language pairs 
○ Cantonese (Yip ‘93), Korean (Kang ‘03), Thai (Kenstowicz & Suchato ‘06), Russian 

(Benson ‘59), Romanian (Friesner ‘09), Hebrew (Schwarzwald ‘98), Yoruba (Ojo 
‘77), Swahili (Schadeberg ‘09), Finnish (Johnson ‘14), 40 languages (Haspelmath & 
Tadmor ‘09), etc. 

• Case studies of phonological/morphological phenomena in borrowing 
○ Phonological integration (Holden ‘76, Van Coetsem ‘88, Ahn & Iverson ‘04, 

Kawahara ‘08, Hock & Joseph ‘09, Calabrese & Wetzels ‘09, Kang ‘11); 
morphological integration (Rabeno ‘97, Repetti ‘06); syntactic integration (Whitney 
‘81, Moravcsik ‘78, Myers-Scotton ‘02), etc. 

• Case studies of sociolinguistic phenomena in borrowing 
○ (Guy ‘90, McMahon ‘94, Sankoff ‘02, Appel & Muysken ‘05), etc.

Linguistic research on lexical borrowing

21



• Phonologically-weighted Levenshtein distance between phonetic sequences 
Mann & Yarowsky ‘01, Dellert ‘18 

• Phonetic + semantic distance Kondrak ‘01, Kondrak,Marcu & Knight ‘03 

• Log-linear model with Optimality-theoretic features Bouchard-Côté et al. ‘09 

• Generative models of sound laws and word evolution for cognate identification 
Hall & Klein ‘10, ‘11 

• Optimality-theoretic constraint-based learning for loanword identification Tsvetkov 
& Dyer ‘16  

• Cognate identification using Siamese networks Soisalon-Soininen & Granroth-
Wilding ’19

Cognate and loanword models
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• 3.1 million cognate pairs across 338 languages using 35 
writing systems

Cognate databases 
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https://wold.clld.org/
Lexical borrowing databases 
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1. Learn monolingual embeddings 

2. Find alignment between embedding spaces 

3. Find nearest neighbors to induce lexicon 

4. Perform supervised alignment to minimize distance between lexicon items 
 
 
 

https://ruder.io/cross-lingual-embeddings/

Bilingual lexicon induction
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• Usually between speakers of equal fluency in two languages 
○ Casual speech/text  
○ Face-to-face or in social media 

• Often defined in terms of a matrix language (based language word order) 
○ (major) Word order in matrix languages, as are particles (morphology) 
○ Lexemes and short phrases in other language 

• We can measure the amount of code switching 
○ As percentage (but doesn’t distinguish number of switchers) 
○ Other measure try to capture that (but its hard) 

•

Code-switching
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• Pidgins: non-natives learn a “simplified” mix of multiple languages 

• Creoles: when such a mix/non-native dialect becomes a native languages  
○ Creoles have native speakers, Pidgins do not (yet-ish). 
○ Might be classified as just dialects, possibly low-status 

• Jamaican Patois (Creole) 
○ An fram Dievid taim op tu wen dem did tek we di Izrel piipl dem an fuos dem fi go wok a Babilan a 

fuotiin jinarieshan Jiizas did av de-so tu, an fram da taim de tu wen Krais Jiizas baan, a fuotiin 
jinarieshan dat tu. 

• Haitian Creole 
○ Zebadya pitit Izmayèl la chèf branch fanmi jida a va pi gwo jij pou tou sa ki an rapò ak lalwa peyi a. 

• English 
○ Is a creole or code-switched Saxon and Norman French (arguably)

Pidgins and Creoles
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• These are linguistic terms 

• They also get used as political terms too 
○ And not always favorably 
○ “not proper English”, “dialect”, “uneducated speech” 

• Often used for speech communication not in writing 
○ Cf Latin verses Vulgar Latin 

• Thus often hard to find examples, written forms are formal 

• But what about code-switching is it a “pre-pidgin”?

Pidgins and Creoles
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• Sometimes between local and global languages 
○ But most common examples are between major languages 

• Hinglish 
○ Hindi and English: very common with educated young Hindi speakers 

• Chinglish 
○ Chinese and English: common amongst Chinese speakers in Singapore 

• Spanglish 
○ Spanish and English: common in Spanish speaking areas of US (e.g. South West, New York, Puerto Rico) 

• African American English and Standard American English 
○ Very common in US in Black communities 

• In these cases people are usually very fluent in both languages

Major Code-switching Dialects
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• Vocabulary coverage: 
○ Talk about machine learning in English and food in Hindi 
○ Relationships in Spanish, studying in English 

• “Showing off” Trends 
○ “Fashionable English Works” vs “Ethnic other words” 
○ Displaying affiliation (show education and/or show roots) 

• Maybe more sentiment in native languages (Rudra et al 2016) 
○ Looking at language choice in tweets 

• Entrainment (copy others in conversation) 

• To get distinctions (simple semantics or opinion)

When do they code-switch
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• Newpapers and Wikipedia will not be code-switched 
○ Why care about NLP of non-standard language? 

• Code-switching is how people actually communicate 

• Code-switching 
○ People type in questions to Google/Bing 
○ They talk to call centers 
○ They write their opinions  
○ Use of code-switching can define group membership 
○ People trust code-switched communication better 
‣ (Not that it is fake, but its their language and someone developed communication in their language) 

• Facebook, Amazon, Microsoft, Apple all want to understand Code-switch more

Why do we care?
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• There is very little data available 
○ Often code-switched data is removed from datasets 

• It is very noisy 
○ Spelling is very non-standard so its hard to know the vocabulary 
○ It often romanizes native script (inconsistently) 

• Our favorite contextualized word embeddings are confused 
○ We have “random” mixed language juxtaposed 
○ BERT was never trained for that 
○ mBERT was never trained for that 

• Its casual speech/text 
○ Monolingual casual speech is hard, we now have two languages

Why is it Hard
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• Often used by hard to find 
○ Harder to verify: is it bilingual or code switched 

• Twitter/youtube/reddit 
○ Social media is good, but its not labeled (and very noisy) 

• Collecting is hard too 
○ Need right environment to have users code-switch 
○ Usually based on their peer relationship. 
○ There isn’t just one type of code-switching

Code Switching Data

33



• Annual speech/text workshops on Code-Switching 
○ At ACL/Interspeech 

• Sitaram et al. “A survey of code-switched speech and language 
processing” 
○ https://arxiv.org/abs/1904.00784 

• Thamar Solorio (U Huston) 
○ https://ritual.uh.edu/code-switching/ 

• Growing but still limited 
○ Only a few language pairs are studies

Code Switching Data
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• Language ID (Speech ID) 
○ Labeling the words 
○ In Speech the pronunciation may vary from monolingual cases) 

• Speech Recognition/Synthesis 
○ Google’s Indian English ASR is actually Hinglish ASR 
○ Code-switch synthesis, but ... 

• Spelling Normalization 
○ As spell checkers don’t work, spelling is particularly inconsistent 
○ May require roman → native script conversion too 

• POS Tagging 
○ Some datasets available (but often noisy) 
○ Detecting matrix language can be important

Code Switching: LT Tasks
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• Named Entity Recognition 
○ (and cross-lingual entity linking) 
○ Various challenges have addressed this 

• Sentiment analysis 
○ Understanding cross lingual references may be important 

• Question Answering 

• NLI 

• Dialog processing 
○ Common Amigos (Ahn et al 2020, Parekh et al 2020) 

• When/home to use code-switching 
○ Generation as a style

Code Switching: LT Tasks
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• Very similar to general low-resource language issues 
○ Find appropriate data 
○ Bootstrap labeling 
○ Data argumentation/generation techniques 
○ Find new (reliable) evaluation techniques

Code Switching: Techniques
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• Social media sites 
○ Code Switching (usually) implies casual speech 

• Youtube for speech 
○ Hinglish: lots of examples, but some human has to find each video 
‣ Google Indian English ASR can give a reasonable transcription 

○ Broadcast news, Bibles/Koran wont have code-switching 

• Reddit (or local equivalent) 
○ Mining the data is hard  
○ You want conversations, not just utterances 

• Twitter/Weibo 
○ Rarely conversational 
○ Sometimes bilingual (translations) not code switching

Mining Data
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• Label small amount of data 
○ Build classifier for the data 
○ Use the classifier to label lots of other data 
○ Select “high confidence” samples and add to training data 
○ Rebuild classifier 
○ Repeat until (something) 

• Care has to made to ensure you don’t miss out on important examples 

• Care has to made to ensure you don’t just add garbage examples 

• Care has to made to ensure you don’t just add trivial addition examples 

• Downstream task evaluation would help 
○ But you probably don’t have that yet.

Bootstrapping Labeling
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of Code-Switched Data", Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching 2021



• Build generator from limited data to get more 
○ Build classifiers that distinguish real from generated data 
○ Choose false positive data to boost base data 
○ Been shown to help in lots of cases  
○ (could this help building better word embedding models) 

• Paraphrase existing data to get more 
○ Replace NE, modify some word by translation

Data augmentation/generation
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• Task evaluation of held out data 
○ Standard techniques, but does that help the overall task 

• We don’t yet have lots of good high level tasks to test 
○ Dialog understanding 
○ Summarization 
○ Question/Answering 

• MSR India (Khanuja et al ACL 2020) 
○ GLUECoS:  Set of standard tasks for testing code-switching models 
○ https://arxiv.org/abs/2004.12376

Evaluation Techniques
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• Multilingual is much more varied than one single language 

• Code-switching 
○ Mixed within an utterance 

• Pidgin 
○ Non-native mixed lingua franca (often for trade) 

• Creole 
○ When Pidgin becomes native and its own language 

• Issues are as hard as with monolingual casual speech 
○ But now we have multiple languages to confuse things

Code-switching, Pidgins and Creoles
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Discussion



• Pick a language that you speak, read about its history, and 
in particular how this language influenced other languages  

○ are there languages that historically borrowed words from your 
language?  

○ can you find specific examples of words?  
○ could you recognize these loanwords in other languages based on 

their new form?  
○ can you guess what were phonological and morphological 

adaptation processes that the loanword had to undergo to 
assimilate in the new language?  

○ Pick another language and analyze the code-switching

Class discussion
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