
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not use or distribute 
these slides for commercial purposes. You may make copies of these slides and use or distribute them for 
educational purposes as long as you cite DeepLearning.AI as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode
http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode


deeplearning.ai

Tasks with 
Long 

Sequences



Long Text Sequences

Tasks In NLP:

Writing Books Chatbots



User 1: What’s for dinner? 
Chatbot: Who’s cooking, you or me?

Chatbots

User 1: Hey now chatbot.
Chatbot: I hope it’s not hay, that’s 
what horses eat.

Context Windows:



deeplearning.ai

Transformer 
Complexity



Transformer Issues

● Attention on sequence of length L takes L2 time and memory

● N layers take N times as much memory

L=100 L2 = 10K (0.001s at 
10M ops/s)
L=1000 L2 = 1M (0.1s at 10M 
ops/s)
L=10000 L2 = 100M (10s at 10M 
ops/s)
L=100000 L2 = 10B (1000s at 10M 
ops/s)

GPT-3 has 96 layers and new models will have 
more



Attention Complexity

● Attention: softmax(QKT)V

● Q, K, V are all [L, d_model]

● QKT is [L, L] 

● Save compute by using area of interest for large L



Memory with N Layers

● Activations need to be stored for backprop

● Big models are getting bigger

● Compute vs memory tradeoff



deeplearning.ai

LSH Attention



What does Attention do?

Select Nearest Neighbors (K,Q) and return corresponding V

image ©

(Transformer: A Novel Neural 
Network Architecture for 
Language Understanding.)

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Nearest Neighbors

Course:

Natural Language Processing with Classification and Vector Spaces

Lessons:

● KNN

● Hash Tables and Hash Functions

● Locality Sensitive Hashing

● Multiple Planes



● Achieve by randomly cutting space
hash(x) = sign(xR) R: [d, n_hash_bins]

Nearest Neighbors

Compute the nearest neighbor to q among vectors {k1, …, kn}

● Attention computes d(q, ki) for i from 1 to n which can be slow

● Faster approximate uses locality sensitive hashing (LSH)

● Locality sensitive: if q is close to ki:
hash(q) == hash(ki) 



LSH Attention

Standard Attention:

LSH Attention:

● Hash Q and K

● Standard attention within same-hash bins

● Repeat a few times to increase

probability of key in the same bin



Attend within same bucket of 
own chunk and previous chunk

LSH Attention
Sequence of Queries = Keys

LSH bucketing

Sort by LSH bucket

Chunk sorted sequence 
to parallelize

image ©

(Reformer: 
The Efficient 
Transformer)

https://arxiv.org/abs/2001.04451


deeplearning.ai

Motivation for 
Reversible 

Layers: Memory!



Memory Efficiency

L = 1 million tokens

~ 2 GBdmodel = 512 input



Memory Efficiency

L = 1 million tokens

~ 2 GB

Attention

Feed Forward

Feed Forward...

~ 2 GB

~ 2 GB

~ 2 GB

output

input

12 x Attention
12 x Feed-Forward

dmodel = 512



Memory Efficiency

L = 1 million tokens

~ 2 GB

Attention

Feed Forward

Feed Forward...

~ 2 GB

~ 2 GB

~ 2 GB

output

input

50 GB total

12 x Attention
12 x Feed-Forward



deeplearning.ai

Reversible 
Residual 
Layers



Residual Blocks in Transformer

Attention

+

Feed Forward

+

-

--
?

?

Needs 
Ability 

To 
Reverse



Reversible Residual Blocks

+

+

Attention

FeedFwd



Reversible layers

+

+

Attention

FeedFwd
-

-
Attention

FeedFwd



Reversible layers equations

Standard Transformer:

ya = x + Attention(x) yb = ya + FeedFwd(ya)

Reversible:

y1 = x1 + Attention(x2) y2 = x2 + FeedFwd(y1)

Recompute x1, x2 from y1, y2:

x1 = y1 - Attention(x2) x2 = y2 - FeedFwd(y1)



Reversible layers equations

+

+

Attention

FeedFwd



Reversible layers equations

x2

+

Attention

x1 y1

FeedFwd

+ y2

y1 = x1 + Attention(x2)

y2 = x2 + FeedFwd(y1)

x1 = y1 - Attention(x2)

x2 = y2 - FeedFwd(y1)



Reversible layers equations

x2

-

Attention

x1 y1

FeedFwd

- y2

y1 = x1 + Attention(x2)

y2 = x2 + FeedFwd(y1)

x1 = y1 - Attention(x2)

x2 = y2 - FeedFwd(y1)



Reversible Transformer: BLEU Scores

Reversible Transformer

Transformer 
[Vaswani+1]

data ©

(Reformer: 
The Efficient 
Transformer)

https://arxiv.org/abs/2001.04451


deeplearning.ai

Reformer



Reformer

The Reversible Transformer

L = 1 million tokens

1 GPU 
(16 GB)



Reformer

● LSH Attention

● Reversible Layers

image ©

(Attention Is 
All You 
Need)

https://arxiv.org/abs/1706.03762


Reformer

image ©

(Reformer: 
The Efficient 
Transformer)

https://arxiv.org/abs/2001.04451


Chatbot

● Reformer

● MulitiWOZ dataset

● Trax


