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Long 
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Long Text Sequences

Tasks In NLP:

Writing Books Chatbots



User 1: What’s for dinner? 
Chatbot: Who’s cooking, you or me?

Chatbots

User 1: Hey now chatbot.
Chatbot: I hope it’s not hay, that’s 
what horses eat.

Context Windows:
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Transformer Issues

● Attention on sequence of length L takes L2 time and memory

● N layers take N times as much memory

L=100 L2 = 10K (0.001s at 
10M ops/s)
L=1000 L2 = 1M (0.1s at 10M 
ops/s)
L=10000 L2 = 100M (10s at 10M 
ops/s)
L=100000 L2 = 10B (1000s at 10M 
ops/s)

GPT-3 has 96 layers and new models will have 
more



Attention Complexity

● Attention: softmax(QKT)V

● Q, K, V are all [L, d_model]

● QKT is [L, L] 

● Save compute by using area of interest for large L



Memory with N Layers

● Activations need to be stored for backprop

● Big models are getting bigger

● Compute vs memory tradeoff
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LSH Attention



What does Attention do?

Select Nearest Neighbors (K,Q) and return corresponding V

image ©

(Transformer: A Novel Neural 
Network Architecture for 
Language Understanding.)

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Nearest Neighbors

Course:

Natural Language Processing with Classification and Vector Spaces

Lessons:

● KNN

● Hash Tables and Hash Functions

● Locality Sensitive Hashing

● Multiple Planes



● Achieve by randomly cutting space
hash(x) = sign(xR) R: [d, n_hash_bins]

Nearest Neighbors

Compute the nearest neighbor to q among vectors {k1, …, kn}

● Attention computes d(q, ki) for i from 1 to n which can be slow

● Faster approximate uses locality sensitive hashing (LSH)

● Locality sensitive: if q is close to ki:
hash(q) == hash(ki) 



LSH Attention

Standard Attention:

LSH Attention:

● Hash Q and K

● Standard attention within same-hash bins

● Repeat a few times to increase

probability of key in the same bin



Attend within same bucket of 
own chunk and previous chunk

LSH Attention
Sequence of Queries = Keys

LSH bucketing

Sort by LSH bucket

Chunk sorted sequence 
to parallelize

image ©

(Reformer: 
The Efficient 
Transformer)

https://arxiv.org/abs/2001.04451
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Memory Efficiency

L = 1 million tokens

~ 2 GBdmodel = 512 input



Memory Efficiency

L = 1 million tokens

~ 2 GB

Attention

Feed Forward

Feed Forward...

~ 2 GB

~ 2 GB

~ 2 GB

output

input

12 x Attention
12 x Feed-Forward

dmodel = 512



Memory Efficiency

L = 1 million tokens

~ 2 GB

Attention

Feed Forward

Feed Forward...

~ 2 GB

~ 2 GB

~ 2 GB

output

input

50 GB total

12 x Attention
12 x Feed-Forward
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Residual Blocks in Transformer

Attention

+

Feed Forward

+

-

--
?

?

Needs 
Ability 

To 
Reverse



Reversible Residual Blocks
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Reversible layers
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Reversible layers equations

Standard Transformer:

ya = x + Attention(x) yb = ya + FeedFwd(ya)

Reversible:

y1 = x1 + Attention(x2) y2 = x2 + FeedFwd(y1)

Recompute x1, x2 from y1, y2:

x1 = y1 - Attention(x2) x2 = y2 - FeedFwd(y1)



Reversible layers equations
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Reversible layers equations

x2

+

Attention

x1 y1

FeedFwd

+ y2

y1 = x1 + Attention(x2)

y2 = x2 + FeedFwd(y1)

x1 = y1 - Attention(x2)

x2 = y2 - FeedFwd(y1)



Reversible layers equations

x2

-

Attention

x1 y1

FeedFwd

- y2

y1 = x1 + Attention(x2)

y2 = x2 + FeedFwd(y1)

x1 = y1 - Attention(x2)

x2 = y2 - FeedFwd(y1)



Reversible Transformer: BLEU Scores

Reversible Transformer

Transformer 
[Vaswani+1]

data ©

(Reformer: 
The Efficient 
Transformer)

https://arxiv.org/abs/2001.04451
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Reformer

The Reversible Transformer

L = 1 million tokens

1 GPU 
(16 GB)



Reformer

● LSH Attention

● Reversible Layers

image ©

(Attention Is 
All You 
Need)

https://arxiv.org/abs/1706.03762


Reformer

image ©

(Reformer: 
The Efficient 
Transformer)

https://arxiv.org/abs/2001.04451


Chatbot

● Reformer

● MulitiWOZ dataset

● Trax


