Supervised ML (training)

Sentiment analysis

Tweet: I am happy because I am learning NLP

Logistic regression

Sentiment analysis

Problems with sparse representations

Vocabulary

Tweets:

[tweet_1, tweet_2, ..., tweet_m]

I am happy because I am learning NLP
...
...
I hated the movie

$$V =$$

[I, am, happy, because, learning, NLP, ... hated, the, movie]

I am happy because I am learning NLP

A lot of zeros! That's a sparse representation.

Positive and negative counts

Corpus

I am happy because I am learning NLP

I am happy

I am sad, I am not learning NLP

l am sad

Positive and negative counts

Positive tweets

I am happy because I am learning NLP

I am happy

Vocabulary	PosFreq (1)
1	3
am	3
happy	2
because	1
learning	1
NLP	1
sad	0
not	0

Positive and negative counts

Vocabulary	NegFreq (0)
1	3
am	3
happy	0
because	0
learning	1
NLP	1
sad	2
not	1

Negative tweets
I am sad, I am not learning NLP
I am sad

Word frequency in classes

Vocabulary	PosFreq (1)	NegFreq (0)
	3	3
am	3	3
happy	2	0
because	1	0
learning	1	1
NLP	1	1
sad	0	1
not	0	1

freqs: dictionary mapping from (word, class) to frequency

freqs: dictionary mapping from (word, class) to frequency

$$X_m = [1, \sum_w freqs(w, 1), \sum_w freqs(w, 0)]$$
 Features of tweet m Bias Sum Pos. Frequencies Frequencies Frequencies

Vocabulary	NegFreq (0)
1	3
am	3
happy	0
because	0
learning	_1_
NLP	_1_
sad	2
not	_1_
,	

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

I am sad, I am not learning NLP

$$X_{m} = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

$$X_{m} = [1, 8, 11]$$

Preprocessing: stop words and punctuation

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai

Stop words	
and	
is	
а	
at	
has	
for	
of	

Preprocessing: Stemming and lowercasing

Preprocessed tweet: [tun, great, ai, model]

General overview

General overview

```
I am Happy Because i am

learning NLP

@deeplearning

[1, 40, 20],
[sad, not, learn, nlp]

...

[1, 20, 50],
...

...

[sad]

[1, 5, 35]]
```

General overview

$$\begin{bmatrix}
1 & X_1^{(1)} & X_2^{(1)} \\
1 & X_1^{(2)} & X_2^{(2)} \\
\vdots & \vdots & \vdots \\
1 & X_1^{(m)} & X_2^{(m)}
\end{bmatrix}$$

$$\begin{bmatrix}
1, 40, 20 \\
\vdots, 20, 50 \\
\vdots, \vdots, 5, 35 \\
\end{bmatrix}$$

$$\begin{bmatrix}
1, 5, 35 \\
\end{bmatrix}$$

General Implementation

Overview of logistic regression

Overview of logistic regression

$$h(x^{(i)}, \theta) = \frac{1}{1 + e^{-\theta^T x^{(i)}}} \underbrace{\frac{\widehat{\Theta}_{0.6}}{\widehat{\Theta}_{0.6}}}_{0.6}$$

Overview of logistic regression

Training LR

Testing logistic regression

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$\begin{array}{c} h(X_{val}, \theta) \\ pred = h(X_{val}, \theta) \ge 0.5 \end{array} \begin{bmatrix} \begin{bmatrix} 0.3 \\ 0.8 \\ 0.5 \\ \vdots \\ h_m \end{bmatrix} \ge 0.5 = \begin{bmatrix} 0.3 \ge 0.5 \\ 0.8 \ge 0.5 \\ 0.5 \ge 0.5 \\ \vdots \\ pred_m \ge 0.5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ \vdots \\ pred_m \end{bmatrix} \end{array}$$

Testing logistic regression

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$\frac{pred = h(X_{val}, \theta) \ge 0.5}{\sum_{i=1}^{m} \frac{(pred^{(i)} == y_{val}^{(i)})}{m}}$$

$$\begin{bmatrix} \underline{0} \\ 1 \\ 1 \\ \vdots \\ pred_m \end{bmatrix} == \begin{bmatrix} \underline{0} \\ 0 \\ 1 \\ \vdots \\ Y_{val_m} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{0} \\ 1 \\ \vdots \\ pred_m == Y_{val_m} \end{bmatrix}$$

Testing logistic regression

$$Y_{val} = egin{bmatrix} 0 \ 1 \ 1 \ 0 \ 1 \end{bmatrix} \ pred = egin{bmatrix} 0 \ 0 \ 1 \ \end{bmatrix}$$

$$(Y_{val} == pred) = \begin{bmatrix} \underline{0} \\ \underline{1} \\ 1 \end{bmatrix}$$

$$accuracy = \frac{4}{5} = 0.8$$

Cost function for logistic regression

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$