
13
Multiple Testing

Thus far, this textbook has mostly focused on estimation and its close
cousin, prediction. In this chapter, we instead focus on hypothesis testing,
which is key to conducting inference. We remind the reader that inference
was briefly discussed in Chapter 2.

While Section 13.1 provides a brief review of null hypotheses, p-values,
test statistics, and other key ideas in hypothesis testing, this chapter as-
sumes that the reader has had previous exposure to these topics. In par-
ticular, we will not focus on why or how to conduct a hypothesis test — a
topic on which entire books can be (and have been) written! Instead, we
will assume that the reader is interested in testing some particular set of
null hypotheses, and has a specific plan in mind for how to conduct the
tests and obtain p-values.

Much of the emphasis in classical statistics focuses on testing a single null
hypothesis, such as H0: the expected blood pressure of mice in the control
group equals the expected blood pressure of mice in the treatment group. Of
course, we would probably like to discover that there is a difference between
the mean blood pressure in the two groups. But for reasons that will become
clear, we construct a null hypothesis corresponding to no difference.

In contemporary settings, we are often faced with huge amounts of
data, and consequently may wish to test a great many null hypotheses.
For instance, rather than simply testing H0, we might want to test m
null hypotheses, H01, . . . , H0m, where H0j: the expected value of the jth

biomarker among mice in the control group equals the expected value of the
jth biomarker among mice in the treatment group. When conducting mul-
tiple testing, we need to be very careful about how we interpret the results,
in order to avoid erroneously rejecting far too many null hypotheses.

This chapter discusses classical as well as more contemporary ways to
conduct multiple testing in a big-data setting. In Section 13.2, we highlight
the challenges associated with multiple testing. Classical solutions to these
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558 13. Multiple Testing

challenges are presented in Section 13.3, and more contemporary solutions
in Sections 13.4 and 13.5.

In particular, Section 13.4 focuses on the false discovery rate. The no-
tion of the false discovery rate dates back to the 1990s. It quickly rose in
popularity in the early 2000s, when large-scale data sets began to come out
of genomics. These datasets were unique not only because of their large
size,1 but also because they were typically collected for exploratory pur-
poses: researchers collected these datasets in order to test a huge number
of null hypotheses, rather than just a very small number of pre-specified
null hypotheses. Today, of course, huge datasets are collected without a
pre-specified null hypothesis across virtually all fields. As we will see, the
false discovery rate is perfectly-suited for this modern-day reality.

This chapter naturally centers upon the classical statistical technique of
p-values, used to quantify the results of hypothesis tests. At the time of
writing of this book (2020), p-values have recently been the topic of exten-
sive commentary in the social science research community, to the extent
that some social science journals have gone so far as to ban the use of
p-values altogether! We will simply comment that when properly under-
stood and applied, p-values provide a powerful tool for drawing inferential
conclusions from our data.

13.1 A Quick Review of Hypothesis Testing
Hypothesis tests provide a rigorous statistical framework for answering
simple “yes-or-no” questions about data, such as the following:

1. Is the true coefficient βj in a linear regression of Y onto X1, . . . , Xp

equal to zero?2

2. Is there a difference in the expected blood pressure of laboratory mice
in the control group and laboratory mice in the treatment group?3

In Section 13.1.1, we briefly review the steps involved in hypothesis test-
ing. Section 13.1.2 discusses the different types of mistakes, or errors, that
can occur in hypothesis testing.

13.1.1 Testing a Hypothesis
Conducting a hypothesis test typically proceeds in four steps. First, we de-
fine the null and alternative hypotheses. Next, we construct a test statistic
that summarizes the strength of evidence against the null hypothesis. We
then compute a p-value that quantifies the probability of having obtained

1Microarray data was viewed as “big data” at the time, although by today’s standards,
this label seems quaint: a microarray dataset can be (and typically was) stored in a
Microsoft Excel spreadsheet!

2This hypothesis test was discussed on page 76 of Chapter 3.
3The “treatment group” refers to the set of mice that receive an experimental treat-

ment, and the “control group” refers to those that do not.
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a comparable or more extreme value of the test statistic under the null
hypothesis. Finally, based on the p-value, we decide whether to reject the
null hypothesis. We now briefly discuss each of these steps in turn.

Step 1: Define the Null and Alternative Hypotheses
In hypothesis testing, we divide the world into two possibilities: the null
hypothesis and the alternative hypothesis. The null hypothesis, denoted H0, null

hypothesis
alternative
hypothesis

is the default state of belief about the world.4 For instance, null hypotheses
associated with the two questions posed earlier in this chapter are as follows:

1. The true coefficient βj in a linear regression of Y onto X1, . . . , Xp

equals zero.

2. There is no difference between the expected blood pressure of mice
in the control and treatment groups.

The null hypothesis is boring by construction: it may well be true, but we
might hope that our data will tell us otherwise.

The alternative hypothesis, denoted Ha, represents something different
and unexpected: for instance, that there is a difference between the ex-
pected blood pressure of the mice in the two groups. Typically, the alter-
native hypothesis simply posits that the null hypothesis does not hold: if
the null hypothesis states that there is no difference between A and B, then
the alternative hypothesis states that there is a difference between A and
B.

It is important to note that the treatment of H0 and Ha is asymmetric.
H0 is treated as the default state of the world, and we focus on using data
to reject H0. If we reject H0, then this provides evidence in favor of Ha. We
can think of rejecting H0 as making a discovery about our data: namely, we
are discovering that H0 does not hold! By contrast, if we fail to reject H0,
then our findings are more nebulous: we will not know whether we failed
to reject H0 because our sample size was too small (in which case testing
H0 again on a larger or higher-quality dataset might lead to rejection), or
whether we failed to reject H0 because H0 really holds.

Step 2: Construct the Test Statistic
Next, we wish to use our data in order to find evidence for or against
the null hypothesis. In order to do this, we must compute a test statistic, test statisticdenoted T , which summarizes the extent to which our data are consistent
with H0. The way in which we construct T depends on the nature of the
null hypothesis that we are testing.

To make things concrete, let xt
1, . . . , x

t
nt

denote the blood pressure mea-
surements for the nt mice in the treatment group, and let xc

1, . . . , x
c
nc

denote
the blood pressure measurements for the nc mice in the control group, and
µt = E(Xt), µc = E(Xc). To test H0 : µt = µc, we make use of a two-sample
t-statistic,5 defined as two-sample

t-statistic
4H0 is pronounced “H naught” or “H zero”.
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FIGURE 13.1. The density function for the N(0, 1) distribution, with the ver-
tical line indicating a value of 2.33. 1% of the area under the curve falls to the
right of the vertical line, so there is only a 2% chance of observing a N(0, 1) value
that is greater than 2.33 or less than −2.33. Therefore, if a test statistic has a
N(0, 1) null distribution, then an observed test statistic of T = 2.33 leads to a
p-value of 0.02.

T =
µ̂t − µ̂c

s
√

1
nt

+ 1
nc

(13.1)

where µ̂t =
1
nt

∑nt

i=1 x
t
i, µ̂c =

1
nc

∑nc

i=1 x
c
i , and

s =

√
(nt − 1)s2t + (nc − 1)s2c

nt + nc − 2
(13.2)

is an estimator of the pooled standard deviation of the two samples.6 Here,
s2t and s2c are unbiased estimators of the variance of the blood pressure in
the treatment and control groups, respectively. A large (absolute) value of
T provides evidence against H0 : µt = µc, and hence evidence in support
of Ha : µt %= µc.

Step 3: Compute the p-Value
In the previous section, we noted that a large (absolute) value of a two-
sample t-statistic provides evidence against H0. This begs the question: how
large is large? In other words, how much evidence against H0 is provided
by a given value of the test statistic?

The notion of a p-value provides us with a way to formalize as well as
p-valueanswer this question. The p-value is defined as the probability of observing

a test statistic equal to or more extreme than the observed statistic, under
the assumption that H0 is in fact true. Therefore, a small p-value provides
evidence against H0.

5The t-statistic derives its name from the fact that, under H0, it follows a t-
distribution.

6Note that (13.2) assumes that the control and treatment groups have equal variance.
Without this assumption, (13.2) would take a slightly different form.
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To make this concrete, suppose that T = 2.33 for the test statistic in
(13.1). Then, we can ask: what is the probability of having observed such
a large value of T , if indeed H0 holds? It turns out that under H0, the
distribution of T in (13.1) follows approximately a N(0, 1) distribution7 —
that is, a normal distribution with mean 0 and variance 1. This distribution
is displayed in Figure 13.1. We see that the vast majority — 98% — of the
N(0, 1) distribution falls between −2.33 and 2.33. This means that under
H0, we would expect to see such a large value of |T | only 2% of the time.
Therefore, the p-value corresponding to T = 2.33 is 0.02.

The distribution of the test statistic under H0 (also known as the test
statistic’s null distribution) will depend on the details of what type of null

distributionnull hypothesis is being tested, and what type of test statistic is used. In
general, most commonly-used test statistics follow a well-known statistical
distribution under the null hypothesis — such as a normal distribution,
a t-distribution, a χ2-distribution, or an F -distribution — provided that
the sample size is sufficiently large and that some other assumptions hold.
Typically, the R function that is used to compute a test statistic will make
use of this null distribution in order to output a p-value. In Section 13.5,
we will see an approach to estimate the null distribution of a test statistic
using re-sampling; in many contemporary settings, this is a very attractive
option, as it exploits the availability of fast computers in order to avoid
having to make potentially problematic assumptions about the data.

The p-value is perhaps one of the most used and abused notions in all of
statistics. In particular, it is sometimes said that the p-value is the probabil-
ity that H0 holds, i.e., that the null hypothesis is true. This is not correct!
The one and only correct interpretation of the p-value is as the fraction
of the time that we would expect to see such an extreme value of the test
statistic8 if we repeated the experiment many many times, provided H0

holds.
In Step 2 we computed a test statistic, and noted that a large (absolute)

value of the test statistic provides evidence against H0. In Step 3 the test
statistic was converted to a p-value, with small p-values providing evidence
against H0. What, then, did we accomplish by converting the test statistic
from Step 2 into a p-value in Step 3? To answer this question, suppose
a data analyst conducts a statistical test, and reports a test statistic of
T = 17.3. Does this provide strong evidence against H0? It’s impossible
to know, without more information: in particular, we would need to know

7More precisely, assuming that the observations are drawn from a normal distribution,
then T follows a t-distribution with nt + nc − 2 degrees of freedom. Provided that nt +
nc−2 is larger than around 40, this is very well-approximated by a N(0, 1) distribution.
In Section 13.5, we will see an alternative and often more attractive way to approximate
the null distribution of T , which avoids making stringent assumptions about the data.

8A one-sided p-value is the probability of seeing such an extreme value of the test
statistic; e.g. the probability of seeing a test statistic greater than or equal to T = 2.33.
A two-sided p-value is the probability of seeing such an extreme value of the absolute
test statistic; e.g. the probability of seeing a test statistic greater than or equal to 2.33
or less than or equal to −2.33. The default recommendation is to report a two-sided
p-value rather than a one-sided p-value, unless there is a clear and compelling reason
that only one direction of the test statistic is of scientific interest.
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Truth
H0 Ha

Decision Reject H0 Type I Error Correct
Do Not Reject H0 Correct Type II Error

TABLE 13.1. A summary of the possible scenarios associated with testing the
null hypothesis H0. Type I errors are also known as false positives, and Type II
errors as false negatives.

what value of the test statistic should be expected, under H0. This is exactly
what a p-value gives us. In other words, a p-value allows us to transform
our test statistic, which is measured on some arbitrary and uninterpretable
scale, into a number between 0 and 1 that can be more easily interpreted.

Step 4: Decide Whether to Reject the Null Hypothesis
Once we have computed a p-value corresponding to H0, it remains for
us to decide whether or not to reject H0. (We do not usually talk about
“accepting” H0: instead, we talk about “failing to reject” H0.) A small p-
value indicates that such a large value of the test statistic is unlikely to
occur under H0, and thereby provides evidence against H0. If the p-value
is sufficiently small, then we will want to reject H0 (and, therefore, make
a “discovery”). But how small is small enough to reject H0?

It turns out that the answer to this question is very much in the eyes
of the beholder, or more specifically, the data analyst. The smaller the p-
value, the stronger the evidence against H0. In some fields, it is typical to
reject H0 if the p-value is below 0.05; this means that, if H0 holds, we would
expect to see such a small p-value no more than 5% of the time.9 However,
in other fields, a much higher burden of proof is required: for example, in
some areas of physics, it is typical to reject H0 only if the p-value is below
10−9!

In the example displayed in Figure 13.1, if we use a threshold of 0.05 as
our cut-off for rejecting the null hypothesis, then we will reject the null. By
contrast, if we use a threshold of 0.01, then we will fail to reject the null.
These ideas are formalized in the next section.

13.1.2 Type I and Type II Errors
If the null hypothesis holds, then we say that it is a true null hypothesis; true null

hypothesisotherwise, it is a false null hypothesis. For instance, if we test H0 : µt = µc

false null
hypothesis

as in Section 13.1.1, and there is indeed no difference in the population
mean blood pressure for mice in the treatment group and mice in the
control group, then H0 is true; otherwise, it is false. Of course, we do not
know a priori whether H0 is true or whether it is false: this is why we need
to conduct a hypothesis test!

9Though a threshold of 0.05 to reject H0 is ubiquitous in some areas of science, we
advise against blind adherence to this arbitrary choice. Furthermore, a data analyst
should typically report the p-value itself, rather than just whether or not it exceeds a
specified threshold value.
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Table 13.1 summarizes the possible scenarios associated with testing the
null hypothesis H0.10 Once the hypothesis test is performed, the row of the
table is known (based on whether or not we have rejected H0); however, it
is impossible for us to know which column we are in. If we reject H0 when
H0 is false (i.e., when Ha is true), or if we do not reject H0 when it is true,
then we arrived at the correct result. However, if we erroneously reject H0

when H0 is in fact true, then we have committed a Type I error. The Type I Type I errorerror rate is defined as the probability of making a Type I error given that Type I error
rateH0 holds, i.e., the probability of incorrectly rejecting H0. Alternatively, if

we do not reject H0 when H0 is in fact false, then we have committed a
Type II error. The power of the hypothesis test is defined as the probability Type II

error
power

of not making a Type II error given that Ha holds, i.e., the probability of
correctly rejecting H0.

Ideally we would like both the Type I and Type II error rates to be small.
But in practice, this is hard to achieve! There typically is a trade-off: we
can make the Type I error small by only rejecting H0 if we are quite sure
that it doesn’t hold; however, this will result in an increase in the Type II
error. Alternatively, we can make the Type II error small by rejecting H0

in the presence of even modest evidence that it does not hold, but this will
cause the Type I error to be large. In practice, we typically view Type I
errors as more “serious” than Type II errors, because the former involves
declaring a scientific finding that is not correct. Hence, when we perform
hypothesis testing, we typically require a low Type I error rate — e.g.,
at most α = 0.05 — while trying to make the Type II error small (or,
equivalently, the power large).

It turns out that there is a direct correspondence between the p-value
threshold that causes us to reject H0, and the Type I error rate. By only
rejecting H0 when the p-value is below α, we ensure that the Type I error
rate will be less than or equal to α.

13.2 The Challenge of Multiple Testing
In the previous section, we saw that rejecting H0 if the p-value is below
(say) 0.01 provides us with a simple way to control the Type I error for H0

at level 0.01: if H0 is true, then there is no more than a 1% probability that
we will reject it. But now suppose that we wish to test m null hypotheses,
H01, . . . , H0m. Will it do to simply reject all null hypotheses for which the
corresponding p-value falls below (say) 0.01? Stated another way, if we
reject all null hypotheses for which the p-value falls below 0.01, then how
many Type I errors should we expect to make?

As a first step towards answering this question, consider a stockbroker
who wishes to drum up new clients by convincing them of her trading

10There are parallels between Table 13.1 and Table 4.6, which has to do with the
output of a binary classifier. In particular, recall from Table 4.6 that a false positive
results from predicting a positive (non-null) label when the true label is in fact negative
(null). This is closely related to a Type I error, which results from rejecting the null
hypothesis when in fact the null hypothesis holds.
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acumen. She tells 1,024 (1,024 = 210) potential new clients that she can
correctly predict whether Apple’s stock price will increase or decrease for 10
days running. There are 210 possibilities for how Apple’s stock price might
change over the course of these 10 days. Therefore, she emails each client
one of these 210 possibilities. The vast majority of her potential clients
will find that the stockbroker’s predictions are no better than chance (and
many will find them to be even worse than chance). But a broken clock is
right twice a day, and one of her potential clients will be really impressed
to find that her predictions were correct for all 10 of the days! And so the
stockbroker gains a new client.

What happened here? Does the stockbroker have any actual insight into
whether Apple’s stock price will increase or decrease? No. How, then, did
she manage to predict Apple’s stock price perfectly for 10 days running?
The answer is that she made a lot of guesses, and one of them happened
to be exactly right.

How does this relate to multiple testing? Suppose that we flip 1,024 fair
coins11 ten times each. Then we would expect (on average) one coin to
come up all tails. (There’s a 1/210 = 1/1,024 chance that any single coin
will come up all tails. So if we flip 1,024 coins, then we expect one coin to
come up all tails, on average.) If one of our coins comes up all tails, then
we might therefore conclude that this particular coin is not fair. In fact, a
standard hypothesis test for the null hypothesis that this particular coin
is fair would lead to a p-value below 0.002!12 But it would be incorrect to
conclude that the coin is not fair: in fact, the null hypothesis holds, and we
just happen to have gotten ten tails in a row by chance.

These examples illustrate the main challenge of multiple testing: when multiple
testingtesting a huge number of null hypotheses, we are bound to get some very

small p-values by chance. If we make a decision about whether to reject each
null hypothesis without accounting for the fact that we have performed a
very large number of tests, then we may end up rejecting a great number
of true null hypotheses — that is, making a large number of Type I errors.

How severe is the problem? Recall from the previous section that if we
reject a single null hypothesis, H0, if its p-value is less than, say, α = 0.01,
then there is a 1% chance of making a false rejection if H0 is in fact true.
Now what if we test m null hypotheses, H01, . . . , H0m, all of which are true?
There’s a 1% chance of rejecting any individual null hypothesis; therefore,
we expect to falsely reject approximately 0.01×m null hypotheses. If m =
10,000, then that means that we expect to falsely reject 100 null hypotheses
by chance! That is a lot of Type I errors.

The crux of the issue is as follows: rejecting a null hypothesis if the p-value
is below α controls the probability of falsely rejecting that null hypothesis
at level α. However, if we do this for m null hypotheses, then the chance of
falsely rejecting at least one of the m null hypotheses is quite a bit higher!

11A fair coin is one that has an equal chance of landing heads or tails.
12Recall that the p-value is the probability of observing data at least this extreme,

under the null hypothesis. If the coin is fair, then the probability of observing at least
ten tails is (1/2)10 = 1/1,024 < 0.001. The p-value is therefore 2/1,024 < 0.002, since
this is the probability of observing ten heads or ten tails.
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H0 is True H0 is False Total
Reject H0 V S R
Do Not Reject H0 U W m−R
Total m0 m−m0 m

TABLE 13.2. A summary of the results of testing m null hypotheses. A given
null hypothesis is either true or false, and a test of that null hypothesis can either
reject or fail to reject it. In practice, the individual values of V , S, U , and W are
unknown. However, we do have access to V +S = R and U +W = m−R, which
are the numbers of null hypotheses rejected and not rejected, respectively.

We will investigate this issue in greater detail, and pose a solution to it, in
Section 13.3.

13.3 The Family-Wise Error Rate
In the following sections, we will discuss testing multiple hypotheses while
controlling the probability of making at least one Type I error.

13.3.1 What is the Family-Wise Error Rate?
Recall that the Type I error rate is the probability of rejecting H0 if H0 is
true. The family-wise error rate (FWER) generalizes this notion to the set- family-wise

error rateting of m null hypotheses, H01, . . . , H0m, and is defined as the probability
of making at least one Type I error. To state this idea more formally, con-
sider Table 13.2, which summarizes the possible outcomes when performing
m hypothesis tests. Here, V represents the number of Type I errors (also
known as false positives or false discoveries), S the number of true posi-
tives, U the number of true negatives, and W the number of Type II errors
(also known as false negatives). Then the family-wise error rate is given by

FWER = Pr(V ≥ 1). (13.3)

A strategy of rejecting any null hypothesis for which the p-value is below
α (i.e. controlling the Type I error for each null hypothesis at level α) leads
to a FWER of

FWER(α) = 1− Pr(V = 0)

= 1− Pr(do not falsely reject any null hypotheses)
= 1− Pr

(⋂m
j=1 {do not falsely reject H0j}

)
. (13.4)

Recall from basic probability that if two events A and B are independent,
then Pr(A∩B) = Pr(A) Pr(B). Therefore, if we make the additional rather
strong assumptions that the m tests are independent and that all m null
hypotheses are true, then

FWER(α) = 1−
m∏

j=1

(1− α) = 1− (1− α)m. (13.5)
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FIGURE 13.2. The family-wise error rate, as a function of the number of
hypotheses tested (displayed on the log scale), for three values of α: α = 0.05
(orange), α = 0.01 (blue), and α = 0.001 (purple). The dashed line indicates
0.05. For example, in order to control the FWER at 0.05 when testing m = 50
null hypotheses, we must control the Type I error for each null hypothesis at level
α = 0.001.

Hence, if we test only one null hypothesis, then FWER(α) = 1− (1−α)1 =
α, so the Type I error rate and the FWER are equal. However, if we perform
m = 100 independent tests, then FWER(α) = 1− (1−α)100. For instance,
taking α = 0.05 leads to a FWER of 1 − (1 − 0.05)100 = 0.994. In other
words, we are virtually guaranteed to make at least one Type I error!

Figure 13.2 displays (13.5) for various values of m, the number of hy-
potheses, and α, the Type I error. We see that setting α = 0.05 results in
a high FWER even for moderate m. With α = 0.01, we can test no more
than five null hypotheses before the FWER exceeds 0.05. Only for very
small values, such as α = 0.001, do we manage to ensure a small FWER,
at least for moderately-sized m.

We now briefly return to the example in Section 13.1.1, in which we
consider testing a single null hypothesis of the form H0 : µt = µc using a
two-sample t-statistic. Recall from Figure 13.1 that in order to guarantee
that the Type I error does not exceed 0.02, we decide whether or not to
reject H0 using a cutpoint of 2.33 (i.e. we reject H0 if |T | ≥ 2.33). Now,
what if we wish to test 10 null hypotheses using two-sample t-statistics,
instead of just one? We will see in Section 13.3.2 that we can guarantee
that the FWER does not exceed 0.02 by rejecting only null hypotheses
for which the p-value falls below 0.002. This corresponds to a much more
stringent cutpoint of 3.09 (i.e. we should reject H0j only if its test statistic
|Tj | ≥ 3.09, for j = 1, . . . , 10). In other words, controlling the FWER at
level α amounts to a much higher bar, in terms of evidence required to
reject any given null hypothesis, than simply controlling the Type I error
for each null hypothesis at level α.
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Manager Mean, x̄ Standard Deviation, s t-statistic p-value
One 3.0 7.4 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

TABLE 13.3. The first two columns correspond to the sample mean and sample
standard deviation of the percentage excess return, over n = 50 months, for the
first five managers in the Fund dataset. The last two columns provide the t-statistic
(√n · X̄/S) and associated p-value for testing H0j : µj = 0, the null hypothesis
that the (population) mean return for the jth hedge fund manager equals zero.

13.3.2 Approaches to Control the Family-Wise Error Rate
In this section, we briefly survey some approaches to control the FWER.
We will illustrate these approaches on the Fund dataset, which records the
monthly percentage excess returns for 2,000 fund managers over n = 50
months.13 Table 13.3 provides relevant summary statistics for the first five
managers.

We first present the Bonferroni method and Holm’s step-down proce-
dure, which are very general-purpose approaches for controlling the FWER
that can be applied whenever m p-values have been computed, regardless
of the form of the null hypotheses, the choice of test statistics, or the
(in)dependence of the p-values. We then briefly discuss Tukey’s method
and Scheffé’s method in order to illustrate the fact that, in certain sit-
uations, more specialized approaches for controlling the FWER may be
preferable.

The Bonferroni Method
As in the previous section, suppose we wish to test H01, . . . , H0m. Let Aj

denote the event that we make a Type I error for the jth null hypothesis,
for j = 1, . . . ,m. Then

FWER = Pr(falsely reject at least one null hypothesis)
= Pr(∪mj=1Aj)

≤
m∑

j=1

Pr(Aj). (13.6)

In (13.6), the inequality results from the fact that for any two events A
and B, Pr(A ∪ B) ≤ Pr(A) + Pr(B), regardless of whether A and B are
independent. The Bonferroni method, or Bonferroni correction, sets the
threshold for rejecting each hypothesis test to α/m, so that Pr(Aj) ≤ α/m.
Equation 13.6 implies that

FWER(α/m) ≤ m× α

m
= α,

13Excess returns correspond to the additional return the fund manager achieves beyond
the market’s overall return. So if the market increases by 5% during a given period and
the fund manager achieves a 7% return, their excess return would be 7%− 5% = 2%.
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so this procedure controls the FWER at level α. For instance, in order to
control the FWER at level 0.1 while testing m = 100 null hypotheses, the
Bonferroni procedure requires us to control the Type I error for each null
hypothesis at level 0.1/100 = 0.001, i.e. to reject all null hypotheses for
which the p-value is below 0.001.

We now consider the Fund dataset in Table 13.3. If we control the Type
I error at level α = 0.05 for each fund manager separately, then we will
conclude that the first and third managers have significantly non-zero ex-
cess returns; in other words, we will reject H01 : µ1 = 0 and H03 : µ3 = 0.
However, as discussed in previous sections, this procedure does not account
for the fact that we have tested multiple hypotheses, and therefore it will
lead to a FWER greater than 0.05. If we instead wish to control the FWER
at level 0.05, then, using a Bonferroni correction, we must control the Type
I error for each individual manager at level α/m = 0.05/5 = 0.01. Conse-
quently, we will reject the null hypothesis only for the first manager, since
the p-values for all other managers exceed 0.01. The Bonferroni correction
gives us peace of mind that we have not falsely rejected too many null
hypotheses, but for a price: we reject few null hypotheses, and thus will
typically make quite a few Type II errors.

The Bonferroni correction is by far the best-known and most commonly-
used multiplicity correction in all of statistics. Its ubiquity is due in large
part to the fact that it is very easy to understand and simple to implement,
and also from the fact that it successfully controls Type I error regardless
of whether the m hypothesis tests are independent. However, as we will see,
it is typically neither the most powerful nor the best approach for multiple
testing correction. In particular, the Bonferroni correction can be quite
conservative, in the sense that the true FWER is often quite a bit lower
than the nominal (or target) FWER; this results from the inequality in
(13.6). By contrast, a less conservative procedure might allow us to control
the FWER while rejecting more null hypotheses, and therefore making
fewer Type II errors.

Holm’s Step-Down Procedure
Holm’s method, also known as Holm’s step-down procedure or the Holm– Holm’s

methodBonferroni method, is an alternative to the Bonferroni procedure. Holm’s
method controls the FWER, but it is less conservative than Bonferroni, in
the sense that it will reject more null hypotheses, typically resulting in fewer
Type II errors and hence greater power. The procedure is summarized in
Algorithm 13.1. The proof that this method controls the FWER is similar
to, but slightly more complicated than, the argument in (13.6) that the
Bonferroni method controls the FWER. It is worth noting that in Holm’s
procedure, the threshold that we use to reject each null hypothesis — p(L)

in Step 5 — actually depends on the values of all m of the p-values. (See the
definition of L in (13.7).) This is in contrast to the Bonferroni procedure,
in which to control the FWER at level α, we reject any null hypotheses for
which the p-value is below α/m, regardless of the other p-values. Holm’s
method makes no independence assumptions about the m hypothesis tests,
and is uniformly more powerful than the Bonferroni method — it will
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Algorithm 13.1 Holm’s Step-Down Procedure to Control the FWER
1. Specify α, the level at which to control the FWER.

2. Compute p-values, p1, . . . , pm, for the m null hypotheses
H01, . . . , H0m.

3. Order the m p-values so that p(1) ≤ p(2) ≤ · · · ≤ p(m).

4. Define
L = min

{
j : p(j) >

α

m+ 1− j

}
. (13.7)

5. Reject all null hypotheses H0j for which pj < p(L).

always reject at least as many null hypotheses as Bonferroni — and so it
should always be preferred.

We now consider applying Holm’s method to the first five fund managers
in the Fund dataset in Table 13.3, while controlling the FWER at level 0.05.
The ordered p-values are p(1) = 0.006, p(2) = 0.012, p(3) = 0.601, p(4) =
0.756 and p(5) = 0.918. The Holm procedure rejects the first two null
hypotheses, because p(1) = 0.006 < 0.05/(5 + 1 − 1) = 0.01 and p(2) =
0.012 < 0.05/(5 + 1 − 2) = 0.0125, but p(3) = 0.601 > 0.05/(5 + 1 − 3) =
0.0167, which implies that L = 3. We note that, in this setting, Holm is
more powerful than Bonferroni: the former rejects the null hypotheses for
the first and third managers, whereas the latter rejects the null hypothesis
only for the first manager.

Figure 13.3 provides an illustration of the Bonferroni and Holm methods
on three simulated data sets in a setting involving m = 10 hypothesis tests,
of which m0 = 2 of the null hypotheses are true. Each panel displays the
ten corresponding p-values, ordered from smallest to largest, and plotted
on a log scale. The eight red points represent the false null hypotheses, and
the two black points represent the true null hypotheses. We wish to control
the FWER at level 0.05. The Bonferroni procedure requires us to reject all
null hypotheses for which the p-value is below 0.005; this is represented by
the black horizontal line. The Holm procedure requires us to reject all null
hypotheses that fall below the blue line. The blue line always lies above the
black line, so Holm will always reject more tests than Bonferroni; the region
between the two lines corresponds to the hypotheses that are only rejected
by Holm. In the left-hand panel, both Bonferroni and Holm successfully
reject seven of the eight false null hypotheses. In the center panel, Holm
successfully rejects all eight of the false null hypotheses, while Bonferroni
fails to reject one. In the right-hand panel, Bonferroni only rejects three of
the false null hypotheses, while Holm rejects all eight. Neither Bonferroni
nor Holm makes any Type I errors in these examples.

Two Special Cases: Tukey’s Method and Scheffé’s Method
Bonferroni’s method and Holm’s method can be used in virtually any set-
ting in which we wish to control the FWER for m null hypotheses: they
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FIGURE 13.3. Each panel displays, for a separate simulation, the sorted
p-values for tests of m = 10 null hypotheses. The p-values corresponding to
the m0 = 2 true null hypotheses are displayed in black, and the rest are in red.
When controlling the FWER at level 0.05, the Bonferroni procedure rejects all
null hypotheses that fall below the black line, and the Holm procedure rejects all
null hypotheses that fall below the blue line. The region between the blue and black
lines indicates null hypotheses that are rejected using the Holm procedure but not
using the Bonferroni procedure. In the center panel, the Holm procedure rejects
one more null hypothesis than the Bonferroni procedure. In the right-hand panel,
it rejects five more null hypotheses.

make no assumptions about the nature of the null hypotheses, the type
of test statistic used, or the (in)dependence of the p-values. However, in
certain very specific settings, we can achieve higher power by controlling
the FWER using approaches that are more tailored to the task at hand.
Tukey’s method and Scheffé’s method provide two such examples.

Table 13.3 indicates that for the Fund dataset, Managers One and Two
have the greatest difference in their sample mean returns. This finding
might motivate us to test the null hypothesis H0 : µ1 = µ2, where µj is the
(population) mean return for the jth fund manager. A two-sample t-test
(13.1) for H0 yields a p-value of 0.0349, suggesting modest evidence against
H0. However, this p-value is misleading, since we decided to compare the
average returns of Managers One and Two only after having examined the
returns for all five managers; this essentially amounts to having performed
m = 5 × (5 − 1)/2 = 10 hypothesis tests, and selecting the one with the
smallest p-value. This suggests that in order to control the FWER at level
0.05, we should make a Bonferroni correction for m = 10 hypothesis tests,
and therefore should only reject a null hypothesis for which the p-value
is below 0.005. If we do this, then we will be unable to reject the null
hypothesis that Managers One and Two have identical performance.

However, in this setting, a Bonferroni correction is actually a bit too
stringent, since it fails to consider the fact that the m = 10 hypothesis
tests are all somewhat related: for instance, Managers Two and Five have
similar mean returns, as do Managers Two and Four; this guarantees that
the mean returns of Managers Four and Five are similar. Stated another
way, the m p-values for the m pairwise comparisons are not independent.
Therefore, it should be possible to control the FWER in a way that is
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FIGURE 13.4. Each panel displays, for a separate simulation, the sorted
p-values for tests of m = 15 hypotheses, corresponding to pairwise tests for the
equality of G = 6 means. The m0 = 10 true null hypotheses are displayed in black,
and the rest are in red. When controlling the FWER at level 0.05, the Bonferroni
procedure rejects all null hypotheses that fall below the black line, whereas Tukey
rejects all those that fall below the blue line. Thus, Tukey’s method has slightly
higher power than Bonferroni’s method. Controlling the Type I error without
adjusting for multiple testing involves rejecting all those that fall below the green
line.

less conservative. This is exactly the idea behind Tukey’s method: when Tukey’s
methodperforming m = G(G − 1)/2 pairwise comparisons of G means, it allows

us to control the FWER at level α while rejecting all null hypotheses for
which the p-value falls below αT , for some αT > α/m.

Figure 13.4 illustrates Tukey’s method on three simulated data sets in a
setting with G = 6 means, with µ1 = µ2 = µ3 = µ4 = µ5 %= µ6. Therefore,
of the m = G(G − 1)/2 = 15 null hypotheses of the form H0 : µj = µk,
ten are true and five are false. In each panel, the true null hypotheses
are displayed in black, and the false ones are in red. The horizontal lines
indicate that Tukey’s method always results in at least as many rejections
as Bonferroni’s method. In the left-hand panel, Tukey correctly rejects two
more null hypotheses than Bonferroni.

Now, suppose that we once again examine the data in Table 13.3, and no-
tice that Managers One and Three have higher mean returns than Managers
Two, Four, and Five. This might motivate us to test the null hypothesis

H0 :
1

2
(µ1 + µ3) =

1

3
(µ2 + µ4 + µ5) . (13.8)

(Recall that µj is the population mean return for the jth hedge fund man-
ager.) It turns out that we could test (13.8) using a variant of the two-
sample t-test presented in (13.1), leading to a p-value of 0.004. This sug-
gests strong evidence of a difference between Managers One and Three
compared to Managers Two, Four, and Five. However, there is a problem:
we decided to test the null hypothesis in (13.8) only after peeking at the
data in Table 13.3. In a sense, this means that we have conducted multiple
testing. In this setting, using Bonferroni to control the FWER at level α
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would require a p-value threshold of α/m, for an extremely large value of
m14.

Scheffé’s method is designed for exactly this setting. It allows us to com- Scheffé’s
methodpute a value αS such that rejecting the null hypothesis H0 in (13.8) if the

p-value is below αS will control the Type I error at level α. It turns out that
for the Fund example, in order to control the Type I error at level α = 0.05,
we must set αS = 0.002. Therefore, we are unable to reject H0 in (13.8), de-
spite the apparently very small p-value of 0.004. An important advantage of
Scheffé’s method is that we can use this same threshold of αS = 0.002 in or-
der to perform a pairwise comparison of any split of the managers into two
groups: for instance, we could also test H0 : 1

3 (µ1 + µ2 + µ3) =
1
2 (µ4 + µ5)

and H0 : 1
4 (µ1 + µ2 + µ3 + µ4) = µ5 using the same threshold of 0.002,

without needing to further adjust for multiple testing.
To summarize, Holm’s procedure and Bonferroni’s procedure are very

general approaches for multiple testing correction that can be applied un-
der all circumstances. However, in certain special cases, more powerful pro-
cedures for multiple testing correction may be available, in order to control
the FWER while achieving higher power (i.e. committing fewer Type II
errors) than would be possible using Holm or Bonferroni. In this section,
we have illustrated two such examples.

13.3.3 Trade-Off Between the FWER and Power
In general, there is a trade-off between the FWER threshold that we choose,
and our power to reject the null hypotheses. Recall that power is defined
as the number of false null hypotheses that we reject divided by the total
number of false null hypotheses, i.e. S/(m−m0) using the notation of Ta-
ble 13.2. Figure 13.5 illustrates the results of a simulation setting involving
m null hypotheses, of which 90% are true and the remaining 10% are false;
power is displayed as a function of the FWER. In this particular simulation
setting, when m = 10, a FWER of 0.05 corresponds to power of approxi-
mately 60%. However, as m increases, the power decreases. With m = 500,
the power is below 0.2 at a FWER of 0.05, so that we successfully reject
only 20% of the false null hypotheses.

Figure 13.5 indicates that it is reasonable to control the FWER when m
takes on a small value, like 5 or 10. However, for m = 100 or m = 1,000,
attempting to control the FWER will make it almost impossible to reject
any of the false null hypotheses. In other words, the power will be extremely
low.

Why is this the case? Recall that, using the notation in Table 13.2, the
FWER is defined as Pr(V ≥ 1) (13.3). In other other words, controlling the
FWER at level α guarantees that the data analyst is very unlikely (with
probability no more than α) to reject any true null hypotheses, i.e. to have
any false positives. In order to make good on this guarantee when m is
large, the data analyst may be forced to reject very few null hypotheses, or
perhaps even none at all (since if R = 0 then also V = 0; see Table 13.2).

14In fact, calculating the “correct” value of m is quite technical, and outside the scope
of this book.
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FIGURE 13.5. In a simulation setting in which 90% of the m null hypotheses are
true, we display the power (the fraction of false null hypotheses that we successfully
reject) as a function of the family-wise error rate. The curves correspond to
m = 10 (orange), m = 100 (blue), and m = 500 (purple). As the value of m
increases, the power decreases. The vertical dashed line indicates a FWER of
0.05.

This is scientifically uninteresting, and typically results in very low power,
as in Figure 13.5.

In practice, when m is large, we may be willing to tolerate a few false
positives, in the interest of making more discoveries, i.e. more rejections of
the null hypothesis. This is the motivation behind the false discovery rate,
which we present next.

13.4 The False Discovery Rate
13.4.1 Intuition for the False Discovery Rate
As we just discussed, when m is large, then trying to prevent any false
positives (as in FWER control) is simply too stringent. Instead, we might
try to make sure that the ratio of false positives (V ) to total positives (V +
S = R) is sufficiently low, so that most of the rejected null hypotheses are
not false positives. The ratio V/R is known as the false discovery proportion false

discovery
proportion

(FDP).
It might be tempting to ask the data analyst to control the FDP: to

make sure that no more than, say, 20% of the rejected null hypotheses are
false positives. However, in practice, controlling the FDP is an impossible
task for the data analyst, since she has no way to be certain, on any par-
ticular dataset, which hypotheses are true and which are false. This is very
similar to the fact that the data analyst can control the FWER, i.e. she
can guarantee that Pr(V ≥ 1) ≤ α for any pre-specified α, but she cannot
guarantee that V = 0 on any particular dataset (short of failing to reject
any null hypotheses, i.e. setting R = 0).
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Therefore, we instead control the false discovery rate (FDR)15, defined false
discovery
rate

as
FDR = E(FDP) = E(V/R). (13.9)

When we control the FDR at (say) level q = 20%, we are rejecting as many
null hypotheses as possible while guaranteeing that no more than 20% of
those rejected null hypotheses are false positives, on average.

In the definition of the FDR in (13.9), the expectation is taken over the
population from which the data are generated. For instance, suppose we
control the FDR for m null hypotheses at q = 0.2. This means that if we
repeat this experiment a huge number of times, and each time control the
FDR at q = 0.2, then we should expect that, on average, 20% of the rejected
null hypotheses will be false positives. On a given dataset, the fraction of
false positives among the rejected hypotheses may be greater than or less
than 20%.

Thus far, we have motivated the use of the FDR from a pragmatic per-
spective, by arguing that when m is large, controlling the FWER is simply
too stringent, and will not lead to “enough” discoveries. An additional mo-
tivation for the use of the FDR is that it aligns well with the way that data
are often collected in contemporary applications. As datasets continue to
grow in size across a variety of fields, it is increasingly common to conduct a
huge number of hypothesis tests for exploratory, rather than confirmatory,
purposes. For instance, a genomic researcher might sequence the genomes
of individuals with and without some particular medical condition, and
then, for each of 20,000 genes, test whether sequence variants in that gene
are associated with the medical condition of interest. This amounts to per-
forming m = 20,000 hypothesis tests. The analysis is exploratory in nature,
in the sense that the researcher does not have any particular hypothesis
in mind; instead she wishes to see whether there is modest evidence for
the association between each gene and the disease, with a plan to further
investigate any genes for which there is such evidence. She is likely willing
to tolerate some number of false positives in the set of genes that she will
investigate further; thus, the FWER is not an appropriate choice. How-
ever, some correction for multiple testing is required: it would not be a
good idea for her to simply investigate all genes with p-values less than
(say) 0.05, since we would expect 1,000 genes to have such small p-values
simply by chance, even if no genes are associated with the disease (since
0.05 × 20,000 = 1,000). Controlling the FDR for her exploratory analysis
at 20% guarantees that — on average — no more than 20% of the genes
that she investigates further are false positives.

It is worth noting that unlike p-values, for which a threshold of 0.05
is typically viewed as the minimum standard of evidence for a “positive”
result, and a threshold of 0.01 or even 0.001 is viewed as much more com-
pelling, there is no standard accepted threshold for FDR control. Instead,
the choice of FDR threshold is typically context-dependent, or even dataset-
dependent. For instance, the genomic researcher in the previous example
might seek to control the FDR at a threshold of 10% if the planned follow-

15If R = 0, then we replace the ratio V/R with 0, to avoid computing 0/0. Formally,
FDR = E(V/R|R > 0)Pr(R > 0).
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up analysis is time-consuming or expensive. Alternatively, a much larger
threshold of 30% might be suitable if she plans an inexpensive follow-up
analysis.

13.4.2 The Benjamini–Hochberg Procedure
We now focus on the task of controlling the FDR: that is, deciding which
null hypotheses to reject while guaranteeing that the FDR, E(V/R), is less
than or equal to some pre-specified value q. In order to do this, we need
some way to connect the p-values, p1, . . . , pm, from the m null hypotheses
to the desired FDR value, q. It turns out that a very simple procedure,
outlined in Algorithm 13.2, can be used to control the FDR.

Algorithm 13.2 Benjamini–Hochberg Procedure to Control the FDR
1. Specify q, the level at which to control the FDR.

2. Compute p-values, p1, . . . , pm, for the m null hypotheses
H01, . . . , H0m.

3. Order the m p-values so that p(1) ≤ p(2) ≤ · · · ≤ p(m).

4. Define
L = max{j : p(j) < qj/m}. (13.10)

5. Reject all null hypotheses H0j for which pj ≤ p(L).

Algorithm 13.2 is known as the Benjamini–Hochberg procedure. The crux Benjamini–
Hochberg
procedure

of this procedure lies in (13.10). For example, consider again the first five
managers in the Fund dataset, presented in Table 13.3. (In this example,
m = 5, although typically we control the FDR in settings involving a much
greater number of null hypotheses.) We see that p(1) = 0.006 < 0.05× 1/5,
p(2) = 0.012 < 0.05 × 2/5, p(3) = 0.601 > 0.05 × 3/5, p(4) = 0.756 >
0.05 × 4/5, and p(5) = 0.918 > 0.05 × 5/5. Therefore, to control the FDR
at 5%, we reject the null hypotheses that the first and third fund managers
perform no better than chance.

As long as the m p-values are independent or only mildly dependent,
then the Benjamini–Hochberg procedure guarantees16 that

FDR ≤ q.

In other words, this procedure ensures that, on average, no more than a
fraction q of the rejected null hypotheses are false positives. Remarkably,
this holds regardless of how many null hypotheses are true, and regardless
of the distribution of the p-values for the null hypotheses that are false.
Therefore, the Benjamini–Hochberg procedure gives us a very easy way to
determine, given a set of m p-values, which null hypotheses to reject in
order to control the FDR at any pre-specified level q.

16However, the proof is well beyond the scope of this book.
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FIGURE 13.6. Each panel displays the same set of m = 2,000 ordered p-values
for the Fund data. The green lines indicate the p-value thresholds corresponding
to FWER control, via the Bonferroni procedure, at levels α = 0.05 (left), α = 0.1
(center), and α = 0.3 (right). The orange lines indicate the p-value thresholds
corresponding to FDR control, via Benjamini–Hochberg, at levels q = 0.05 (left),
q = 0.1 (center), and q = 0.3 (right). When the FDR is controlled at level q = 0.1,
146 null hypotheses are rejected (center); the corresponding p-values are shown
in blue. When the FDR is controlled at level q = 0.3, 279 null hypotheses are
rejected (right); the corresponding p-values are shown in blue.

There is a fundamental difference between the Bonferroni procedure of
Section 13.3.2 and the Benjamini–Hochberg procedure. In the Bonferroni
procedure, in order to control the FWER for m null hypotheses at level
α, we must simply reject null hypotheses for which the p-value is below
α/m. This threshold of α/m does not depend on anything about the data
(beyond the value of m), and certainly does not depend on the p-values
themselves. By contrast, the rejection threshold used in the Benjamini–
Hochberg procedure is more complicated: we reject all null hypotheses for
which the p-value is less than or equal to the Lth smallest p-value, where
L is itself a function of all m p-values, as in (13.10). Therefore, when con-
ducting the Benjamini–Hochberg procedure, we cannot plan out in advance
what threshold we will use to reject p-values; we need to first see our data.
For instance, in the abstract, there is no way to know whether we will reject
a null hypothesis corresponding to a p-value of 0.01 when using an FDR
threshold of 0.1 with m = 100; the answer depends on the values of the
other m− 1 p-values. This property of the Benjamini–Hochberg procedure
is shared by the Holm procedure, which also involves a data-dependent
p-value threshold.

Figure 13.6 displays the results of applying the Bonferroni and Benjamini–
Hochberg procedures on the Fund data set, using the full set of m = 2,000
fund managers, of which the first five were displayed in Table 13.3. When
the FWER is controlled at level 0.3 using Bonferroni, only one null hypoth-
esis is rejected; that is, we can conclude only that a single fund manager is
beating the market. This is despite the fact that a substantial portion of
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the m = 2,000 fund managers appear to have beaten the market without
performing correction for multiple testing — for instance, 13 of them have
p-values below 0.001. By contrast, when the FDR is controlled at level 0.3,
we can conclude that 279 fund managers are beating the market: we expect
that no more than around 279×0.3 = 83.7 of these fund managers had good
performance only due to chance. Thus, we see that FDR control is much
milder — and more powerful — than FWER control, in the sense that it
allows us to reject many more null hypotheses, with a cost of substantially
more false positives.

The Benjamini–Hochberg procedure has been around since the mid-
1990s. While a great many papers have been published since then proposing
alternative approaches for FDR control that can perform better in partic-
ular scenarios, the Benjamini–Hochberg procedure remains a very useful
and widely-applicable approach.

13.5 A Re-Sampling Approach to p-Values and
False Discovery Rates

Thus far, the discussion in this chapter has assumed that we are interested
in testing a particular null hypothesis H0 using a test statistic T , which
has some known (or assumed) distribution under H0, such as a normal
distribution, a t-distribution, a χ2-distribution, or an F -distribution. This
is referred to as the theoretical null distribution. We typically rely upon theoretical

null
distribution

the availability of a theoretical null distribution in order to obtain a p-
value associated with our test statistic. Indeed, for most of the types of
null hypotheses that we might be interested in testing, a theoretical null
distribution is available, provided that we are willing to make stringent
assumptions about our data.

However, if our null hypothesis H0 or test statistic T is somewhat un-
usual, then it may be the case that no theoretical null distribution is avail-
able. Alternatively, even if a theoretical null distribution exists, then we
may be wary of relying upon it, perhaps because some assumption that is
required for it to hold is violated. For instance, maybe the sample size is
too small.

In this section, we present a framework for performing inference in this
setting, which exploits the availability of fast computers in order to approx-
imate the null distribution of T , and thereby to obtain a p-value. While this
framework is very general, it must be carefully instantiated for a specific
problem of interest. Therefore, in what follows, we consider a specific ex-
ample in which we wish to test whether the means of two random variables
are equal, using a two-sample t-test.

The discussion in this section is more challenging than the preceding
sections in this chapter, and can be safely skipped by a reader who is
content to use the theoretical null distribution to compute p-values for his
or her test statistics.
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13.5.1 A Re-Sampling Approach to the p-Value
We return to the example of Section 13.1.1, in which we wish to test whether
the mean of a random variable X equals the mean of a random variable Y ,
i.e. H0 : E(X) = E(Y ), against the alternative Ha : E(X) %= E(Y ). Given
nX independent observations from X and nY independent observations
from Y , the two-sample t-statistic takes the form

T =
µ̂X − µ̂Y

s
√

1
nX

+ 1
nY

(13.11)

where µ̂X = 1
nX

∑nX

i=1 xi, µ̂Y = 1
nY

∑nY

i=1 yi, s =
√

(nX−1)s2X+(nY −1)s2Y
nX+nY −2 ,

and s2X and s2Y are unbiased estimators of the variances in the two groups.
A large (absolute) value of T provides evidence against H0.

If nX and nY are large, then T in (13.11) approximately follows a N(0, 1)
distribution. But if nX and nY are small, then in the absence of a strong
assumption about the distribution of X and Y , we do not know the the-
oretical null distribution of T .17 In this case, it turns out that we can
approximate the null distribution of T using a re-sampling approach, or re-samplingmore specifically, a permutation approach. permutationTo do this, we conduct a thought experiment. If H0 holds, so that E(X) =
E(Y ), and we make the stronger assumption that the distributions of X
and Y are the same, then the distribution of T is invariant under swapping
observations of X with observations of Y . That is, if we randomly swap
some of the observations in X with the observations in Y , then the test
statistic T in (13.11) computed based on this swapped data has the same
distribution as T based on the original data. This is true only if H0 holds,
and the distributions of X and Y are the same.

This suggests that in order to approximate the null distribution of T ,
we can take the following approach. We randomly permute the nX + nY

observations B times, for some large value of B, and each time we compute
(13.11). We let T ∗1, . . . , T ∗B denote the values of (13.11) on the permuted
data. These can be viewed as an approximation of the null distribution
of T under H0. Recall that by definition, a p-value is the probability of
observing a test statistic at least this extreme under H0. Therefore, to
compute a p-value for T , we can simply compute

p-value =

∑B
b=1 1(|T∗b|≥|T |)

B
, (13.12)

the fraction of permuted datasets for which the value of the test statistic
is at least as extreme as the value observed on the original data. This
procedure is summarized in Algorithm 13.3.

17If we assume that X and Y are normally distributed, then T in (13.11) follows a
t-distribution with nX +nY − 2 degrees of freedom under H0. However, in practice, the
distribution of random variables is rarely known, and so it can be preferable to perform
a re-sampling approach instead of making strong and unjustified assumptions. If the
results of the re-sampling approach disagree with the results of assuming a theoretical
null distribution, then the results of the re-sampling approach are more trustworthy.
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Algorithm 13.3 Re-Sampling p-Value for a Two-Sample t-Test
1. Compute T , defined in (13.11), on the original data x1, . . . , xnX and

y1, . . . , ynY .

2. For b = 1, . . . , B, where B is a large number (e.g. B = 10,000):

(a) Permute the nX +nY observations at random. Call the first nX

permuted observations x∗
1, . . . , x

∗
nX

, and call the remaining nY

observations y∗1 , . . . , y
∗
nY

.
(b) Compute (13.11) on the permuted data x∗

1, . . . , x
∗
nX

and
y∗1 , . . . , y

∗
nY

, and call the result T ∗b.

3. The p-value is given by
∑B

b=1 1(|T∗b|≥|T |)
B .

We try out this procedure on the Khan dataset, which consists of expres-
sion measurements for 2,308 genes in four sub-types of small round blood
cell tumors, a type of cancer typically seen in children. This dataset is part
of the ISLR2 package. We restrict our attention to the two sub-types for
which the most observations are available: rhabdomyosarcoma (nX = 29)
and Burkitt’s lymphoma (nY = 25).

A two-sample t-test for the null hypothesis that the 11th gene’s mean
expression values are equal in the two groups yields T = −2.09. Using
the theoretical null distribution, which is a t52 distribution (since nX +
nY − 2 = 52), we obtain a p-value of 0.041. (Note that a t52 distribution
is virtually indistinguishable from a N(0, 1) distribution.) If we instead
apply Algorithm 13.3 with B = 10,000, then we obtain a p-value of 0.042.
Figure 13.7 displays the theoretical null distribution, the re-sampling null
distribution, and the actual value of the test statistic (T = −2.09) for this
gene. In this example, we see very little difference between the p-values
obtained using the theoretical null distribution and the re-sampling null
distribution.

By contrast, Figure 13.8 shows an analogous set of results for the 877th
gene. In this case, there is a substantial difference between the theoretical
and re-sampling null distributions, which results in a difference between
their p-values.

In general, in settings with a smaller sample size or a more skewed data
distribution (so that the theoretical null distribution is less accurate), the
difference between the re-sampling and theoretical p-values will tend to
be more pronounced. In fact, the substantial difference between the re-
sampling and theoretical null distributions in Figure 13.8 is due to the
fact that a single observation in the 877th gene is very far from the other
observations, leading to a very skewed distribution.

13.5.2 A Re-Sampling Approach to the False Discovery Rate
Now, suppose that we wish to control the FDR for m null hypotheses,
H01, . . . , H0m, in a setting in which either no theoretical null distribution
is available, or else we simply prefer to avoid the use of a theoretical null
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Null Distribution of Test Statistic for 11th Gene
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FIGURE 13.7. The 11th gene in the Khan dataset has a test statistic of
T = −2.09. Its theoretical and re-sampling null distributions are almost identical.
The theoretical p-value equals 0.041 and the re-sampling p-value equals 0.042.

FIGURE 13.8. The 877th gene in the Khan dataset has a test statistic of
T = −0.57. Its theoretical and re-sampling null distributions are quite different.
The theoretical p-value equals 0.571, and the re-sampling p-value equals 0.673.

distribution. As in Section 13.5.1, we make use of a two-sample t-statistic for
each hypothesis, leading to the test statistics T1, . . . , Tm. We could simply
compute a p-value for each of the m null hypotheses, as in Section 13.5.1,
and then apply the Benjamini–Hochberg procedure of Section 13.4.2 to
these p-values. However, it turns out that we can do this in a more direct
way, without even needing to compute p-values.

Recall from Section 13.4 that the FDR is defined as E(V/R), using the
notation in Table 13.2. In order to estimate the FDR via re-sampling, we
first make the following approximation:

FDR = E

(
V

R

)
≈ E(V )

R
. (13.13)

Now suppose we reject any null hypothesis for which the test statistic
exceeds c in absolute value. Then computing R in the denominator on the
right-hand side of (13.13) is straightforward: R =

∑m
j=1 1(|Tj |≥c).

Null Distribution of Test Statistic for 877th Gene
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However, the numerator E(V ) on the right-hand side of (13.13) is more
challenging. This is the expected number of false positives associated with
rejecting any null hypothesis for which the test statistic exceeds c in abso-
lute value. At the risk of stating the obvious, estimating V is challenging
because we do not know which of H01, . . . , H0m are really true, and so we
do not know which rejected hypotheses are false positives. To overcome this
problem, we take a re-sampling approach, in which we simulate data under
H01, . . . , H0m, and then compute the resulting test statistics. The number
of re-sampled test statistics that exceed c provides an estimate of V .

In greater detail, in the case of a two-sample t-statistic (13.11) for each
of the null hypotheses H01, . . . , H0m, we can estimate E(V ) as follows. Let
x(j)
1 , . . . , x(j)

nX and y(j)1 , . . . , y(j)nY denote the data associated with the jth
null hypothesis, j = 1, . . . ,m. We permute these nX + nY observations at
random, and then compute the t-statistic on the permuted data. For this
permuted data, we know that all of the null hypotheses H01, . . . , H0m hold;
therefore, the number of permuted t-statistics that exceed the threshold c in
absolute value provides an estimate for E(V ). This estimate can be further
improved by repeating the permutation process B times, for a large value
of B, and averaging the results.

Algorithm 13.4 details this procedure.18 It provides what is known as a
plug-in estimate of the FDR, because the approximation in (13.13) allows us
to estimate the FDR by plugging R into the denominator and an estimate
for E(V ) into the numerator.

We apply the re-sampling approach to the FDR from Algorithm 13.4,
as well as the Benjamini–Hochberg approach from Algorithm 13.2 using
theoretical p-values, to the m = 2,308 genes in the Khan dataset. Results are
shown in Figure 13.9. We see that for a given number of rejected hypotheses,
the estimated FDRs are almost identical for the two methods.

We began this section by noting that in order to control the FDR for m
hypothesis tests using a re-sampling approach, we could simply compute m
re-sampling p-values as in Section 13.5.1, and then apply the Benjamini–
Hochberg procedure of Section 13.4.2 to these p-values. It turns out that if
we define the jth re-sampling p-value as

pj =

∑m
j′=1

∑B
b=1 1(|T∗b

j′ |≥|Tj |)

Bm
(13.14)

for j = 1, . . . ,m, instead of as in (13.12), then applying the Benjamini–
Hochberg procedure to these re-sampled p-values is exactly equivalent to
Algorithm 13.4. Note that (13.14) is an alternative to (13.12) that pools
the information across all m hypothesis tests in approximating the null
distribution.

13.5.3 When Are Re-Sampling Approaches Useful?
In Sections 13.5.1 and 13.5.2, we considered testing null hypotheses of the
form H0 : E(X) = E(Y ) using a two-sample t-statistic (13.11), for which we

18To implement Algorithm 13.4 efficiently, the same set of permutations in Step 2(b)i.
should be used for all m null hypotheses.
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Algorithm 13.4 Plug-In FDR for a Two-Sample T -Test
1. Select a threshold c, where c > 0.

2. For j = 1, . . . ,m:

(a) Compute T (j), the two-sample t-statistic (13.11) for the null
hypothesis H0j on the basis of the original data, x(j)

1 , . . . , x(j)
nX

and y(j)1 , . . . , y(j)nY .
(b) For b = 1, . . . , B, where B is a large number (e.g. B = 10,000):

i. Permute the nX +nY observations at random. Call the first
nX observations x∗(j)

1 , . . . , x∗(j)
nX , and call the remaining ob-

servations y∗(j)1 , . . . , y∗(j)nY .
ii. Compute (13.11) on the permuted data x∗(j)

1 , . . . , x∗(j)
nX and

y∗(j)1 , . . . , y∗(j)nY , and call the result T (j),∗b.

3. Compute R =
∑m

j=1 1(|T (j)|≥c).

4. Compute V̂ =

∑B
b=1

∑m
j=1 1(|T (j),∗b|≥c)

B .

5. The estimated FDR associated with the threshold c is V̂ /R.

approximated the null distribution via a re-sampling approach. We saw that
using the re-sampling approach gave us substantially different results from
using the theoretical p-value approach in Figure 13.8, but not in Figure 13.7.

In general, there are two settings in which a re-sampling approach is
particularly useful:

1. Perhaps no theoretical null distribution is available. This may be the
case if you are testing an unusual null hypothesis H0, or using an
unsual test statistic T .

2. Perhaps a theoretical null distribution is available, but the assump-
tions required for its validity do not hold. For instance, the two-
sample t-statistic in (13.11) follows a tnX+nY −2 distribution only if
the observations are normally distributed. Furthermore, it follows a
N(0, 1) distribution only if nX and nY are quite large. If the data are
non-normal and nX and nY are small, then p-values that make use
of the theoretical null distribution will not be valid (i.e. they will not
properly control the Type I error).

In general, if you can come up with a way to re-sample or permute
your observations in order to generate data that follow the null distribu-
tion, then you can compute p-values or estimate the FDR using variants
of Algorithms 13.3 and 13.4. In many real-world settings, this provides a
powerful tool for hypothesis testing when no out-of-box hypothesis tests are
available, or when the key assumptions underlying those out-of-box tests
are violated.
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FIGURE 13.9. For j = 1, . . . ,m = 2,308, we tested the null hypothesis that for
the jth gene in the Khan dataset, the mean expression in Burkitt’s lymphoma equals
the mean expression in rhabdomyosarcoma. For each value of k from 1 to 2,308, the
y-axis displays the estimated FDR associated with rejecting the null hypotheses
corresponding to the k smallest p-values. The orange dashed curve shows the
FDR obtained using the Benjamini–Hochberg procedure, whereas the blue solid
curve shows the FDR obtained using the re-sampling approach of Algorithm 13.4,
with B = 10,000. There is very little difference between the two FDR estimates.
According to either estimate, rejecting the null hypothesis for the 500 genes with
the smallest p-values corresponds to an FDR of around 17.7%.

13.6 Lab: Multiple Testing
We include our usual imports seen in earlier labs.

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from ISLP import load_data

We also collect the new imports needed for this lab.
In [2]: from scipy.stats import \

(ttest_1samp,
ttest_rel,
ttest_ind,
t as t_dbn)

from statsmodels.stats.multicomp import \
pairwise_tukeyhsd

from statsmodels.stats.multitest import \
multipletests as mult_test

13.6.1 Review of Hypothesis Tests
We begin by performing some one-sample t-tests. First we create 100 vari-
ables, each consisting of 10 observations. The first 50 variables have mean
0.5 and variance 1, while the others have mean 0 and variance 1.

In [3]: rng = np.random.default_rng(12)
X = rng.standard_normal((10, 100))
true_mean = np.array([0.5]*50 + [0]*50)
X += true_mean[None,:]
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To begin, we use ttest_1samp() from the scipy.stats module to test H0 : ttest_1samp()
µ1 = 0, the null hypothesis that the first variable has mean zero.

In [4]: result = ttest_1samp(X[:,0], 0)
result.pvalue

Out[4]: 0.931

The p-value comes out to 0.931, which is not low enough to reject the null
hypothesis at level α = 0.05. In this case, µ1 = 0.5, so the null hypothesis
is false. Therefore, we have made a Type II error by failing to reject the
null hypothesis when the null hypothesis is false.

We now test H0,j : µj = 0 for j = 1, . . . , 100. We compute the 100 p-
values, and then construct a vector recording whether the jth p-value is
less than or equal to 0.05, in which case we reject H0j , or greater than 0.05,
in which case we do not reject H0j , for j = 1, . . . , 100.

In [5]: p_values = np.empty(100)
for i in range(100):

p_values[i] = ttest_1samp(X[:,i], 0).pvalue
decision = pd.cut(p_values,

[0, 0.05, 1],
labels=['Reject H0',

'Do not reject H0'])
truth = pd.Categorical(true_mean == 0,

categories=[True, False],
ordered=True)

Since this is a simulated data set, we can create a 2 × 2 table similar to
Table 13.2.

In [6]: pd.crosstab(decision,
truth,

rownames=['Decision'],
colnames=['H0'])

Out[6]: H0 True False
Decision

Reject H0 5 15
Do not reject H0 45 35

Therefore, at level α = 0.05, we reject 15 of the 50 false null hypotheses,
and we incorrectly reject 5 of the true null hypotheses. Using the notation
from Section 13.3, we have V = 5, S = 15, U = 45 and W = 35. We have
set α = 0.05, which means that we expect to reject around 5% of the true
null hypotheses. This is in line with the 2× 2 table above, which indicates
that we rejected V = 5 of the 50 true null hypotheses.

In the simulation above, for the false null hypotheses, the ratio of the
mean to the standard deviation was only 0.5/1 = 0.5. This amounts to
quite a weak signal, and it resulted in a high number of Type II errors.
Let’s instead simulate data with a stronger signal, so that the ratio of the
mean to the standard deviation for the false null hypotheses equals 1. We
make only 10 Type II errors.
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In [7]: true_mean = np.array([1]*50 + [0]*50)
X = rng.standard_normal((10, 100))
X += true_mean[None,:]
for i in range(100):

p_values[i] = ttest_1samp(X[:,i], 0).pvalue
decision = pd.cut(p_values,

[0, 0.05, 1],
labels=['Reject H0',

'Do not reject H0'])
truth = pd.Categorical(true_mean == 0,

categories=[True, False],
ordered=True)

pd.crosstab(decision,
truth,
rownames=['Decision'],
colnames=['H0'])

Out[7]: H0 True False
Decision

Reject H0 2 40
Do not reject H0 48 10

13.6.2 Family-Wise Error Rate
Recall from (13.5) that if the null hypothesis is true for each of m inde-
pendent hypothesis tests, then the FWER is equal to 1 − (1 − α)m. We
can use this expression to compute the FWER for m = 1, . . . , 500 and
α = 0.05, 0.01, and 0.001. We plot the FWER for these values of α in order
to reproduce Figure 13.2.

In [8]: m = np.linspace(1, 501)
fig, ax = plt.subplots()
[ax.plot(m,

1 - (1 - alpha)**m,
label=r'$\alpha=%s$' % str(alpha))
for alpha in [0.05, 0.01, 0.001]]

ax.set_xscale('log')
ax.set_xlabel('Number of Hypotheses')
ax.set_ylabel('Family-Wise Error Rate')
ax.legend()
ax.axhline(0.05, c='k', ls='--');

As discussed previously, even for moderate values of m such as 50, the
FWER exceeds 0.05 unless α is set to a very low value, such as 0.001. Of
course, the problem with setting α to such a low value is that we are likely
to make a number of Type II errors: in other words, our power is very low.

We now conduct a one-sample t-test for each of the first five managers
in the Fund dataset, in order to test the null hypothesis that the jth fund
manager’s mean return equals zero, H0,j : µj = 0.

In [9]: Fund = load_data('Fund')
fund_mini = Fund.iloc[:,:5]
fund_mini_pvals = np.empty(5)
for i in range(5):
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fund_mini_pvals[i] = ttest_1samp(fund_mini.iloc[:,i], 0).pvalue
fund_mini_pvals

Out[9]: array([0.006, 0.918, 0.012, 0.601, 0.756])

The p-values are low for Managers One and Three, and high for the other
three managers. However, we cannot simply reject H0,1 and H0,3, since
this would fail to account for the multiple testing that we have performed.
Instead, we will conduct Bonferroni’s method and Holm’s method to control
the FWER.

To do this, we use the multipletests() function from the statsmodels multiple-
tests()module (abbreviated to mult_test()). Given the p-values, for methods like

Holm and Bonferroni the function outputs adjusted p-values, which can be adjusted
p-valuesthought of as a new set of p-values that have been corrected for multiple

testing. If the adjusted p-value for a given hypothesis is less than or equal
to α, then that hypothesis can be rejected while maintaining a FWER of
no more than α. In other words, for such methods, the adjusted p-values
resulting from the multipletests() function can simply be compared to
the desired FWER in order to determine whether or not to reject each
hypothesis. We will later see that we can use the same function to control
FDR as well.

The mult_test() function takes p-values and a method argument, as well
as an optional alpha argument. It returns the decisions (reject below) as
well as the adjusted p-values (bonf).

In [10]: reject, bonf = mult_test(fund_mini_pvals, method = "bonferroni")[:2]
reject

Out[10]: array([ True, False, False, False, False])

The p-values bonf are simply the fund_mini_pvalues multiplied by 5 and
truncated to be less than or equal to 1.

In [11]: bonf, np.minimum(fund_mini_pvals * 5, 1)

Out[11]: (array([0.03, 1. , 0.06, 1. , 1. ]),
array([0.03, 1. , 0.06, 1. , 1. ]))

Therefore, using Bonferroni’s method, we are able to reject the null hy-
pothesis only for Manager One while controlling FWER at 0.05.

By contrast, using Holm’s method, the adjusted p-values indicate that
we can reject the null hypotheses for Managers One and Three at a FWER
of 0.05.

In [12]: mult_test(fund_mini_pvals, method = "holm", alpha=0.05)[:2]

Out[12]: (array([ True, False, True, False, False]),
array([0.03, 1. , 0.05, 1. , 1. ]))

As discussed previously, Manager One seems to perform particularly well,
whereas Manager Two has poor performance.
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In [13]: fund_mini.mean()

Out[13]: Manager1 3.0
Manager2 -0.1
Manager3 2.8
Manager4 0.5
Manager5 0.3
dtype: float64

Is there evidence of a meaningful difference in performance between these
two managers? We can check this by performing a paired t-test using the paired t-test
ttest_rel() function from scipy.stats:

ttest_rel()
In [14]: ttest_rel(fund_mini['Manager1'],

fund_mini['Manager2']).pvalue

Out[14]: 0.038

The test results in a p-value of 0.038, suggesting a statistically significant
difference.

However, we decided to perform this test only after examining the data
and noting that Managers One and Two had the highest and lowest mean
performances. In a sense, this means that we have implicitly performed(5
2

)
= 5(5 − 1)/2 = 10 hypothesis tests, rather than just one, as discussed

in Section 13.3.2. Hence, we use the pairwise_tukeyhsd() function from pairwise_
tukeyhsd()statsmodels.stats.multicomp to apply Tukey’s method in order to adjust

for multiple testing. This function takes as input a fitted ANOVA regres- ANOVAsion model, which is essentially just a linear regression in which all of the
predictors are qualitative. In this case, the response consists of the monthly
excess returns achieved by each manager, and the predictor indicates the
manager to which each return corresponds.

In [15]: returns = np.hstack([fund_mini.iloc[:,i] for i in range(5)])
managers = np.hstack([[i+1]*50 for i in range(5)])
tukey = pairwise_tukeyhsd(returns, managers)
print(tukey.summary())

Multiple Comparison of Means - Tukey HSD, FWER=0.05
===================================================
group1 group2 meandiff p-adj lower upper reject
---------------------------------------------------

1 2 -3.1 0.1862 -6.9865 0.7865 False
1 3 -0.2 0.9999 -4.0865 3.6865 False
1 4 -2.5 0.3948 -6.3865 1.3865 False
1 5 -2.7 0.3152 -6.5865 1.1865 False
2 3 2.9 0.2453 -0.9865 6.7865 False
2 4 0.6 0.9932 -3.2865 4.4865 False
2 5 0.4 0.9986 -3.4865 4.2865 False
3 4 -2.3 0.482 -6.1865 1.5865 False
3 5 -2.5 0.3948 -6.3865 1.3865 False
4 5 -0.2 0.9999 -4.0865 3.6865 False

---------------------------------------------------

The pairwise_tukeyhsd() function provides confidence intervals for the
difference between each pair of managers (lower and upper), as well as a
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FIGURE 13.10. 95% confidence intervals for each manager on the Fund data,
using Tukey’s method to adjust for multiple testing. All of the confidence intervals
overlap, so none of the differences among managers are statistically significant
when controlling FWER at level 0.05.

p-value. All of these quantities have been adjusted for multiple testing.
Notice that the p-value for the difference between Managers One and Two
has increased from 0.038 to 0.186, so there is no longer clear evidence of
a difference between the managers’ performances. We can plot the confi-
dence intervals for the pairwise comparisons using the plot_simultaneous()
method of tukey. Any pair of intervals that don’t overlap indicates a sig-
nificant difference at the nominal level of 0.05. In this case, no differences
are considered significant as reported in the table above.

In [16]: fig, ax = plt.subplots(figsize=(8,8))
tukey.plot_simultaneous(ax=ax);

The result can be seen19 in Figure 13.10.

13.6.3 False Discovery Rate
Now we perform hypothesis tests for all 2,000 fund managers in the Fund
dataset. We perform a one-sample t-test of H0,j : µj = 0, which states that
the jth fund manager’s mean return is zero.

In [17]: fund_pvalues = np.empty(2000)
for i, manager in enumerate(Fund.columns):

fund_pvalues[i] = ttest_1samp(Fund[manager], 0).pvalue

There are far too many managers to consider trying to control the
FWER. Instead, we focus on controlling the FDR: that is, the expected
fraction of rejected null hypotheses that are actually false positives. The

19Traditionally this plot shows intervals for each paired difference. With many groups
it is more convenient and equivalent to display one interval per group, as is done here.
By “differencing” all pairs of intervals displayed here you recover the traditional plot.
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multipletests() function (abbreviated mult_test()) can be used to carry
out the Benjamini–Hochberg procedure.

In [18]: fund_qvalues = mult_test(fund_pvalues, method = "fdr_bh")[1]
fund_qvalues[:10]

Out[18]: array([0.09, 0.99, 0.12, 0.92, 0.96, 0.08, 0.08, 0.08, 0.08,
0.08])

The q-values output by the Benjamini–Hochberg procedure can be inter- q-valuespreted as the smallest FDR threshold at which we would reject a particular
null hypothesis. For instance, a q-value of 0.1 indicates that we can reject
the corresponding null hypothesis at an FDR of 10% or greater, but that
we cannot reject the null hypothesis at an FDR below 10%.

If we control the FDR at 10%, then for how many of the fund managers
can we reject H0,j : µj = 0?

In [19]: (fund_qvalues <= 0.1).sum()

Out[19]: 146

We find that 146 of the 2,000 fund managers have a q-value below 0.1;
therefore, we are able to conclude that 146 of the fund managers beat the
market at an FDR of 10%. Only about 15 (10% of 146) of these fund
managers are likely to be false discoveries.

By contrast, if we had instead used Bonferroni’s method to control the
FWER at level α = 0.1, then we would have failed to reject any null
hypotheses!

In [20]: (fund_pvalues <= 0.1 / 2000).sum()

Out[20]: 0

Figure 13.6 displays the ordered p-values, p(1) ≤ p(2) ≤ · · · ≤ p(2000), for
the Fund dataset, as well as the threshold for rejection by the Benjamini–
Hochberg procedure. Recall that the Benjamini–Hochberg procedure iden-
tifies the largest p-value such that p(j) < qj/m, and rejects all hypotheses
for which the p-value is less than or equal to p(j). In the code below, we im-
plement the Benjamini–Hochberg procedure ourselves, in order to illustrate
how it works. We first order the p-values. We then identify all p-values that
satisfy p(j) < qj/m (sorted_set_). Finally, selected_ is a boolean array
indicating which p-values are less than or equal to the largest p-value in
sorted_[sorted_set_]. Therefore, selected_ indexes the p-values rejected
by the Benjamini–Hochberg procedure.

In [21]: sorted_ = np.sort(fund_pvalues)
m = fund_pvalues.shape[0]
q = 0.1
sorted_set_ = np.where(sorted_ < q * np.linspace(1, m, m) / m)[0]
if sorted_set_.shape[0] > 0:

selected_ = fund_pvalues < sorted_[sorted_set_].max()
sorted_set_ = np.arange(sorted_set_.max())

else:
selected_ = []
sorted_set_ = []
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We now reproduce the middle panel of Figure 13.6.
In [22]: fig, ax = plt.subplots()

ax.scatter(np.arange(0, sorted_.shape[0]) + 1,
sorted_, s=10)

ax.set_yscale('log')
ax.set_xscale('log')
ax.set_ylabel('P-Value')
ax.set_xlabel('Index')
ax.scatter(sorted_set_+1, sorted_[sorted_set_], c='r', s=20)
ax.axline((0, 0), (1,q/m), c='k', ls='--', linewidth=3);

13.6.4 A Re-Sampling Approach
Here, we implement the re-sampling approach to hypothesis testing using
the Khan dataset, which we investigated in Section 13.5. First, we merge
the training and testing data, which results in observations on 83 patients
for 2,308 genes.

In [23]: Khan = load_data('Khan')
D = pd.concat([Khan['xtrain'], Khan['xtest']])
D['Y'] = pd.concat([Khan['ytrain'], Khan['ytest']])
D['Y'].value_counts()

Out[23]: 2 29
4 25
3 18
1 11
Name: Y, dtype: int64

There are four classes of cancer. For each gene, we compare the mean ex-
pression in the second class (rhabdomyosarcoma) to the mean expression in
the fourth class (Burkitt’s lymphoma). Performing a standard two-sample
t-test using ttest_ind() from scipy.stats on the 11th gene produces a ttest_ind()test-statistic of -2.09 and an associated p-value of 0.0412, suggesting mod-
est evidence of a difference in mean expression levels between the two cancer
types.

In [24]: D2 = D[lambda df:df['Y'] == 2]
D4 = D[lambda df:df['Y'] == 4]
gene_11 = 'G0011'
observedT, pvalue = ttest_ind(D2[gene_11],

D4[gene_11],
equal_var=True)

observedT, pvalue

Out[24]: (-2.094, 0.041)

However, this p-value relies on the assumption that under the null hy-
pothesis of no difference between the two groups, the test statistic follows
a t-distribution with 29 + 25 − 2 = 52 degrees of freedom. Instead of us-
ing this theoretical null distribution, we can randomly split the 54 patients
into two groups of 29 and 25, and compute a new test statistic. Under the
null hypothesis of no difference between the groups, this new test statis-
tic should have the same distribution as our original one. Repeating this
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process 10,000 times allows us to approximate the null distribution of the
test statistic. We compute the fraction of the time that our observed test
statistic exceeds the test statistics obtained via re-sampling.

In [25]: B = 10000
Tnull = np.empty(B)
D_ = np.hstack([D2[gene_11], D4[gene_11]])
n_ = D2[gene_11].shape[0]
D_null = D_.copy()
for b in range(B):

rng.shuffle(D_null)
ttest_ = ttest_ind(D_null[:n_],

D_null[n_:],
equal_var=True)

Tnull[b] = ttest_.statistic
(np.abs(Tnull) > np.abs(observedT)).mean()

Out[25]: 0.0398

This fraction, 0.0398, is our re-sampling-based p-value. It is almost identi-
cal to the p-value of 0.0412 obtained using the theoretical null distribution.
We can plot a histogram of the re-sampling-based test statistics in order
to reproduce Figure 13.7.

In [26]: fig, ax = plt.subplots(figsize=(8,8))
ax.hist(Tnull,

bins=100,
density=True,
facecolor='y',
label='Null')

xval = np.linspace(-4.2, 4.2, 1001)
ax.plot(xval,

t_dbn.pdf(xval, D_.shape[0]-2),
c='r')

ax.axvline(observedT,
c='b',
label='Observed')

ax.legend()
ax.set_xlabel("Null Distribution of Test Statistic");

The re-sampling-based null distribution is almost identical to the theoret-
ical null distribution, which is displayed in red.

Finally, we implement the plug-in re-sampling FDR approach outlined
in Algorithm 13.4. Depending on the speed of your computer, calculating
the FDR for all 2,308 genes in the Khan dataset may take a while. Hence,
we will illustrate the approach on a random subset of 100 genes. For each
gene, we first compute the observed test statistic, and then produce 10,000
re-sampled test statistics. This may take a few minutes to run. If you are
in a rush, then you could set B equal to a smaller value (e.g. B=500).

In [27]: m, B = 100, 10000
idx = rng.choice(Khan['xtest'].columns, m, replace=False)
T_vals = np.empty(m)
Tnull_vals = np.empty((m, B))

for j in range(m):
col = idx[j]
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T_vals[j] = ttest_ind(D2[col],
D4[col],
equal_var=True).statistic

D_ = np.hstack([D2[col], D4[col]])
D_null = D_.copy()
for b in range(B):

rng.shuffle(D_null)
ttest_ = ttest_ind(D_null[:n_],

D_null[n_:],
equal_var=True)

Tnull_vals[j,b] = ttest_.statistic

Next, we compute the number of rejected null hypotheses R, the esti-
mated number of false positives V̂ , and the estimated FDR, for a range
of threshold values c in Algorithm 13.4. The threshold values are chosen
using the absolute values of the test statistics from the 100 genes.

In [28]: cutoffs = np.sort(np.abs(T_vals))
FDRs, Rs, Vs = np.empty((3, m))
for j in range(m):

R = np.sum(np.abs(T_vals) >= cutoffs[j])
V = np.sum(np.abs(Tnull_vals) >= cutoffs[j]) / B
Rs[j] = R
Vs[j] = V
FDRs[j] = V / R

Now, for any given FDR, we can find the genes that will be rejected.
For example, with FDR controlled at 0.1, we reject 15 of the 100 null
hypotheses. On average, we would expect about one or two of these genes
(i.e. 10% of 15) to be false discoveries. At an FDR of 0.2, we can reject
the null hypothesis for 28 genes, of which we expect around six to be false
discoveries.

The variable idx stores which genes were included in our 100 randomly-
selected genes. Let’s look at the genes whose estimated FDR is less than
0.1.

In [29]: sorted(idx[np.abs(T_vals) >= cutoffs[FDRs < 0.1].min()])

At an FDR threshold of 0.2, more genes are selected, at the cost of having
a higher expected proportion of false discoveries.

In [30]: sorted(idx[np.abs(T_vals) >= cutoffs[FDRs < 0.2].min()])

The next line generates Figure 13.11, which is similar to Figure 13.9,
except that it is based on only a subset of the genes.

In [31]: fig, ax = plt.subplots()
ax.plot(Rs, FDRs, 'b', linewidth=3)
ax.set_xlabel("Number of Rejections")
ax.set_ylabel("False Discovery Rate");
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FIGURE 13.11. The estimated false discovery rate versus the number of rejected
null hypotheses, for 100 genes randomly selected from the Khan dataset.

13.7 Exercises
Conceptual

1. Suppose we test m null hypotheses, all of which are true. We control
the Type I error for each null hypothesis at level α. For each sub-
problem, justify your answer.

(a) In total, how many Type I errors do we expect to make?
(b) Suppose that the m tests that we perform are independent.

What is the family-wise error rate associated with these m tests?
Hint: If two events A and B are independent, then Pr(A∩B) =
Pr(A) Pr(B).

(c) Suppose that m = 2, and that the p-values for the two tests are
positively correlated, so that if one is small then the other will
tend to be small as well, and if one is large then the other will
tend to be large. How does the family-wise error rate associated
with these m = 2 tests qualitatively compare to the answer in
(b) with m = 2?
Hint: First, suppose that the two p-values are perfectly correlated.

(d) Suppose again that m = 2, but that now the p-values for the
two tests are negatively correlated, so that if one is large then
the other will tend to be small. How does the family-wise error
rate associated with these m = 2 tests qualitatively compare to
the answer in (b) with m = 2?
Hint: First, suppose that whenever one p-value is less than α,
then the other will be greater than α. In other words, we can
never reject both null hypotheses.
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2. Suppose that we test m hypotheses, and control the Type I error for
each hypothesis at level α. Assume that all m p-values are indepen-
dent, and that all null hypotheses are true.

(a) Let the random variable Aj equal 1 if the jth null hypothesis is
rejected, and 0 otherwise. What is the distribution of Aj?

(b) What is the distribution of
∑m

j=1 Aj?
(c) What is the standard deviation of the number of Type I errors

that we will make?

3. Suppose we test m null hypotheses, and control the Type I error for
the jth null hypothesis at level αj , for j = 1, . . . ,m. Argue that the
family-wise error rate is no greater than

∑m
j=1 αj .

Null Hypothesis p-value
H01 0.0011
H02 0.031
H03 0.017
H04 0.32
H05 0.11
H06 0.90
H07 0.07
H08 0.006
H09 0.004
H10 0.0009

TABLE 13.4. p-values for Exercise 4.

4. Suppose we test m = 10 hypotheses, and obtain the p-values shown
in Table 13.4.

(a) Suppose that we wish to control the Type I error for each null
hypothesis at level α = 0.05. Which null hypotheses will we
reject?

(b) Now suppose that we wish to control the FWER at level α =
0.05. Which null hypotheses will we reject? Justify your answer.

(c) Now suppose that we wish to control the FDR at level q = 0.05.
Which null hypotheses will we reject? Justify your answer.

(d) Now suppose that we wish to control the FDR at level q = 0.2.
Which null hypotheses will we reject? Justify your answer.

(e) Of the null hypotheses rejected at FDR level q = 0.2, approxi-
mately how many are false positives? Justify your answer.

5. For this problem, you will make up p-values that lead to a certain
number of rejections using the Bonferroni and Holm procedures.

(a) Give an example of five p-values (i.e. five numbers between 0 and
1 which, for the purpose of this problem, we will interpret as p-
values) for which both Bonferroni’s method and Holm’s method
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reject exactly one null hypothesis when controlling the FWER
at level 0.1.

(b) Now give an example of five p-values for which Bonferroni re-
jects one null hypothesis and Holm rejects more than one null
hypothesis at level 0.1.

6. For each of the three panels in Figure 13.3, answer the following
questions:

(a) How many false positives, false negatives, true positives, true
negatives, Type I errors, and Type II errors result from applying
the Bonferroni procedure to control the FWER at level α =
0.05?

(b) How many false positives, false negatives, true positives, true
negatives, Type I errors, and Type II errors result from applying
the Holm procedure to control the FWER at level α = 0.05?

(c) What is the false discovery proportion associated with using the
Bonferroni procedure to control the FWER at level α = 0.05?

(d) What is the false discovery proportion associated with using the
Holm procedure to control the FWER at level α = 0.05?

(e) How would the answers to (a) and (c) change if we instead used
the Bonferroni procedure to control the FWER at level α =
0.001?

Applied
7. This problem makes use of the Carseats dataset in the ISLP package.

(a) For each quantitative variable in the dataset besides Sales, fit
a linear model to predict Sales using that quantitative variable.
Report the p-values associated with the coefficients for the vari-
ables. That is, for each model of the form Y = β0 + β1X + ε,
report the p-value associated with the coefficient β1. Here, Y
represents Sales and X represents one of the other quantitative
variables.

(b) Suppose we control the Type I error at level α = 0.05 for the
p-values obtained in (a). Which null hypotheses do we reject?

(c) Now suppose we control the FWER at level 0.05 for the p-values.
Which null hypotheses do we reject?

(d) Finally, suppose we control the FDR at level 0.2 for the p-values.
Which null hypotheses do we reject?

8. In this problem, we will simulate data from m = 100 fund managers.

rng = np.random.default_rng(1)
n, m = 20, 100
X = rng.normal(size=(n, m))
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These data represent each fund manager’s percentage returns for each
of n = 20 months. We wish to test the null hypothesis that each
fund manager’s percentage returns have population mean equal to
zero. Notice that we simulated the data in such a way that each fund
manager’s percentage returns do have population mean zero; in other
words, all m null hypotheses are true.

(a) Conduct a one-sample t-test for each fund manager, and plot a
histogram of the p-values obtained.

(b) If we control Type I error for each null hypothesis at level α =
0.05, then how many null hypotheses do we reject?

(c) If we control the FWER at level 0.05, then how many null hy-
potheses do we reject?

(d) If we control the FDR at level 0.05, then how many null hy-
potheses do we reject?

(e) Now suppose we “cherry-pick” the 10 fund managers who per-
form the best in our data. If we control the FWER for just these
10 fund managers at level 0.05, then how many null hypothe-
ses do we reject? If we control the FDR for just these 10 fund
managers at level 0.05, then how many null hypotheses do we
reject?

(f) Explain why the analysis in (e) is misleading.
Hint: The standard approaches for controlling the FWER and
FDR assume that all tested null hypotheses are adjusted for mul-
tiplicity, and that no “cherry-picking” of the smallest p-values
has occurred. What goes wrong if we cherry-pick?


