
12
Unsupervised Learning

Most of this book concerns supervised learning methods such as
regression and classification. In the supervised learning setting, we typically
have access to a set of p features X1, X2, . . . , Xp, measured on n obser-
vations, and a response Y also measured on those same n observations.
The goal is then to predict Y using X1, X2, . . . , Xp.

This chapter will instead focus on unsupervised learning, a set of sta-
tistical tools intended for the setting in which we have only a set of fea-
tures X1, X2, . . . , Xp measured on n observations. We are not interested
in prediction, because we do not have an associated response variable Y .
Rather, the goal is to discover interesting things about the measurements
on X1, X2, . . . , Xp. Is there an informative way to visualize the data? Can
we discover subgroups among the variables or among the observations?
Unsupervised learning refers to a diverse set of techniques for answering
questions such as these. In this chapter, we will focus on two particu-
lar types of unsupervised learning: principal components analysis, a tool
used for data visualization or data pre-processing before supervised tech-
niques are applied, and clustering, a broad class of methods for discovering
unknown subgroups in data.

12.1 The Challenge of Unsupervised Learning
Supervised learning is a well-understood area. In fact, if you have read
the preceding chapters in this book, then you should by now have a good
grasp of supervised learning. For instance, if you are asked to predict a
binary outcome from a data set, you have a very well developed set of tools
at your disposal (such as logistic regression, linear discriminant analysis,
classification trees, support vector machines, and more) as well as a clear

© Springer Nature Switzerland AG 2023
G. James et al., An Introduction to Statistical Learning, Springer Texts in Statistics,
https://doi.org/10.1007/978-3-031-38747-0_12

503

https://doi.org/10.1007/978-3-031-38747-0_12
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38747-0_12&domain=pdf

504 12. Unsupervised Learning

understanding of how to assess the quality of the results obtained (using
cross-validation, validation on an independent test set, and so forth).

In contrast, unsupervised learning is often much more challenging. The
exercise tends to be more subjective, and there is no simple goal for the
analysis, such as prediction of a response. Unsupervised learning is often
performed as part of an exploratory data analysis. Furthermore, it can be exploratory

data
analysis

hard to assess the results obtained from unsupervised learning methods,
since there is no universally accepted mechanism for performing cross-
validation or validating results on an independent data set. The reason
for this difference is simple. If we fit a predictive model using a supervised
learning technique, then it is possible to check our work by seeing how
well our model predicts the response Y on observations not used in fitting
the model. However, in unsupervised learning, there is no way to check our
work because we don’t know the true answer—the problem is unsupervised.

Techniques for unsupervised learning are of growing importance in a
number of fields. A cancer researcher might assay gene expression levels in
100 patients with breast cancer. He or she might then look for subgroups
among the breast cancer samples, or among the genes, in order to obtain
a better understanding of the disease. An online shopping site might try
to identify groups of shoppers with similar browsing and purchase histo-
ries, as well as items that are of particular interest to the shoppers within
each group. Then an individual shopper can be preferentially shown the
items in which he or she is particularly likely to be interested, based on
the purchase histories of similar shoppers. A search engine might choose
which search results to display to a particular individual based on the click
histories of other individuals with similar search patterns. These statistical
learning tasks, and many more, can be performed via unsupervised learning
techniques.

12.2 Principal Components Analysis
Principal components are discussed in Section 6.3.1 in the context of
principal components regression. When faced with a large set of corre-
lated variables, principal components allow us to summarize this set with
a smaller number of representative variables that collectively explain most
of the variability in the original set. The principal component directions
are presented in Section 6.3.1 as directions in feature space along which
the original data are highly variable. These directions also define lines and
subspaces that are as close as possible to the data cloud. To perform
principal components regression, we simply use principal components as
predictors in a regression model in place of the original larger set of vari-
ables.

Principal components analysis (PCA) refers to the process by which prin- principal
components
analysis

cipal components are computed, and the subsequent use of these compo-
nents in understanding the data. PCA is an unsupervised approach, since
it involves only a set of features X1, X2, . . . , Xp, and no associated response
Y . Apart from producing derived variables for use in supervised learning
problems, PCA also serves as a tool for data visualization (visualization of

12.2 Principal Components Analysis 505

the observations or visualization of the variables). It can also be used as a
tool for data imputation — that is, for filling in missing values in a data
matrix.

We now discuss PCA in greater detail, focusing on the use of PCA as
a tool for unsupervised data exploration, in keeping with the topic of this
chapter.

12.2.1 What Are Principal Components?
Suppose that we wish to visualize n observations with measurements on a
set of p features, X1, X2, . . . , Xp, as part of an exploratory data analysis.
We could do this by examining two-dimensional scatterplots of the data,
each of which contains the n observations’ measurements on two of the
features. However, there are

(p
2

)
= p(p−1)/2 such scatterplots; for example,

with p = 10 there are 45 plots! If p is large, then it will certainly not be
possible to look at all of them; moreover, most likely none of them will
be informative since they each contain just a small fraction of the total
information present in the data set. Clearly, a better method is required to
visualize the n observations when p is large. In particular, we would like to
find a low-dimensional representation of the data that captures as much of
the information as possible. For instance, if we can obtain a two-dimensional
representation of the data that captures most of the information, then we
can plot the observations in this low-dimensional space.

PCA provides a tool to do just this. It finds a low-dimensional represen-
tation of a data set that contains as much as possible of the variation. The
idea is that each of the n observations lives in p-dimensional space, but not
all of these dimensions are equally interesting. PCA seeks a small number
of dimensions that are as interesting as possible, where the concept of in-
teresting is measured by the amount that the observations vary along each
dimension. Each of the dimensions found by PCA is a linear combination
of the p features. We now explain the manner in which these dimensions,
or principal components, are found.

The first principal component of a set of features X1, X2, . . . , Xp is the
normalized linear combination of the features

Z1 = φ11X1 + φ21X2 + · · ·+ φp1Xp (12.1)
that has the largest variance. By normalized, we mean that

∑p
j=1 φ

2
j1 = 1.

We refer to the elements φ11, . . . ,φp1 as the loadings of the first principal loadingcomponent; together, the loadings make up the principal component load-
ing vector, φ1 = (φ11 φ21 . . . φp1)T . We constrain the loadings so that
their sum of squares is equal to one, since otherwise setting these elements
to be arbitrarily large in absolute value could result in an arbitrarily large
variance.

Given an n× p data set X, how do we compute the first principal com-
ponent? Since we are only interested in variance, we assume that each of
the variables in X has been centered to have mean zero (that is, the col-
umn means of X are zero). We then look for the linear combination of the
sample feature values of the form

zi1 = φ11xi1 + φ21xi2 + · · ·+ φp1xip (12.2)

506 12. Unsupervised Learning

that has largest sample variance, subject to the constraint that
∑p

j=1 φ
2
j1=1.

In other words, the first principal component loading vector solves the op-
timization problem

maximize
φ11,...,φp1





1

n

n∑

i=1




p∑

j=1

φj1xij




2




subject to

p∑

j=1

φ2
j1 = 1. (12.3)

From (12.2) we can write the objective in (12.3) as 1
n

∑n
i=1 z

2
i1. Since

1
n

∑n
i=1 xij = 0, the average of the z11, . . . , zn1 will be zero as well. Hence

the objective that we are maximizing in (12.3) is just the sample variance of
the n values of zi1. We refer to z11, . . . , zn1 as the scores of the first princi- score
pal component. Problem (12.3) can be solved via an eigen decomposition, eigen decom-

positiona standard technique in linear algebra, but the details are outside of the
scope of this book.1

There is a nice geometric interpretation of the first principal component.
The loading vector φ1 with elements φ11,φ21, . . . ,φp1 defines a direction in
feature space along which the data vary the most. If we project the n data
points x1, . . . , xn onto this direction, the projected values are the princi-
pal component scores z11, . . . , zn1 themselves. For instance, Figure 6.14 on
page 254 displays the first principal component loading vector (green solid
line) on an advertising data set. In these data, there are only two features,
and so the observations as well as the first principal component loading
vector can be easily displayed. As can be seen from (6.19), in that data set
φ11 = 0.839 and φ21 = 0.544.

After the first principal component Z1 of the features has been deter-
mined, we can find the second principal component Z2. The second princi-
pal component is the linear combination of X1, . . . , Xp that has maximal
variance out of all linear combinations that are uncorrelated with Z1. The
second principal component scores z12, z22, . . . , zn2 take the form

zi2 = φ12xi1 + φ22xi2 + · · ·+ φp2xip, (12.4)

where φ2 is the second principal component loading vector, with elements
φ12,φ22, . . . ,φp2. It turns out that constraining Z2 to be uncorrelated with
Z1 is equivalent to constraining the direction φ2 to be orthogonal (perpen-
dicular) to the direction φ1. In the example in Figure 6.14, the observations
lie in two-dimensional space (since p = 2), and so once we have found φ1,
there is only one possibility for φ2, which is shown as a blue dashed line.
(From Section 6.3.1, we know that φ12 = 0.544 and φ22 = −0.839.) But in
a larger data set with p > 2 variables, there are multiple distinct principal
components, and they are defined in a similar manner. To find φ2, we solve
a problem similar to (12.3) with φ2 replacing φ1, and with the additional
constraint that φ2 is orthogonal to φ1.2

1As an alternative to the eigen decomposition, a related technique called the singular
value decomposition can be used. This will be explored in the lab at the end of this
chapter.

2On a technical note, the principal component directions φ1, φ2, φ3, . . . are given
by the ordered sequence of eigenvectors of the matrix XTX, and the variances of the
components are the eigenvalues. There are at most min(n− 1, p) principal components.

12.2 Principal Components Analysis 507

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

First Principal Component

Se
co

nd
 P

rin
ci

pa
l C

om
po

ne
nt

Alabama Alaska

Arizona

Arkansas

California

Colorado
Connecticut

Delaware

Florida

Georgia

Hawaii

Idaho

Illinois

IndianaIowa
Kansas

Kentucky Louisiana

Maine Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio

Oklahoma

OregonPennsylvania

Rhode Island

South Carolina

South Dakota Tennessee

Texas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

−0.5 0.0 0.5

−0
.5

0.
0

0.
5

Murder

Assault

UrbanPop

Rape

FIGURE 12.1. The first two principal components for the USArrests data. The
blue state names represent the scores for the first two principal components. The
orange arrows indicate the first two principal component loading vectors (with axes
on the top and right). For example, the loading for Rape on the first component
is 0.54, and its loading on the second principal component 0.17 (the word Rape
is centered at the point (0.54, 0.17)). This figure is known as a biplot, because it
displays both the principal component scores and the principal component loadings.

Once we have computed the principal components, we can plot them
against each other in order to produce low-dimensional views of the data.
For instance, we can plot the score vector Z1 against Z2, Z1 against Z3,
Z2 against Z3, and so forth. Geometrically, this amounts to projecting the
original data down onto the subspace spanned by φ1, φ2, and φ3, and
plotting the projected points.

We illustrate the use of PCA on the USArrests data set. For each of the
50 states in the United States, the data set contains the number of arrests
per 100, 000 residents for each of three crimes: Assault, Murder, and Rape.
We also record UrbanPop (the percent of the population in each state living
in urban areas). The principal component score vectors have length n = 50,
and the principal component loading vectors have length p = 4. PCA was
performed after standardizing each variable to have mean zero and standard

508 12. Unsupervised Learning

PC1 PC2
Murder 0.5358995 −0.4181809
Assault 0.5831836 −0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186

TABLE 12.1. The principal component loading vectors, φ1 and φ2, for the
USArrests data. These are also displayed in Figure 12.1.

deviation one. Figure 12.1 plots the first two principal components of these
data. The figure represents both the principal component scores and the
loading vectors in a single biplot display. The loadings are also given in biplotTable 12.2.1.

In Figure 12.1, we see that the first loading vector places approximately
equal weight on Assault, Murder, and Rape, but with much less weight on
UrbanPop. Hence this component roughly corresponds to a measure of overall
rates of serious crimes. The second loading vector places most of its weight
on UrbanPop and much less weight on the other three features. Hence, this
component roughly corresponds to the level of urbanization of the state.
Overall, we see that the crime-related variables (Murder, Assault, and Rape)
are located close to each other, and that the UrbanPop variable is far from the
other three. This indicates that the crime-related variables are correlated
with each other—states with high murder rates tend to have high assault
and rape rates—and that the UrbanPop variable is less correlated with the
other three.

We can examine differences between the states via the two principal com-
ponent score vectors shown in Figure 12.1. Our discussion of the loading
vectors suggests that states with large positive scores on the first compo-
nent, such as California, Nevada and Florida, have high crime rates, while
states like North Dakota, with negative scores on the first component, have
low crime rates. California also has a high score on the second component,
indicating a high level of urbanization, while the opposite is true for states
like Mississippi. States close to zero on both components, such as Indiana,
have approximately average levels of both crime and urbanization.

12.2.2 Another Interpretation of Principal Components
The first two principal component loading vectors in a simulated three-
dimensional data set are shown in the left-hand panel of Figure 12.2; these
two loading vectors span a plane along which the observations have the
highest variance.

In the previous section, we describe the principal component loading vec-
tors as the directions in feature space along which the data vary the most,
and the principal component scores as projections along these directions.
However, an alternative interpretation of principal components can also be

12.2 Principal Components Analysis 509

First principal component

Se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

•
• •

•
•

•

•
•

•
•

•
•

•
•

•

• •
•

•
•

•

•

•• •
••
• •
• •

•

•

•

•
•

•

•
•

•
•

• •

• •
•

•

•
•

•

•
•

•

•

• •

•

•

•

•

• •

•

• •
•

•

• •

•

•

•
•

•
• •

•

•
•

• •

•
•

•
•

•

•
•

••

FIGURE 12.2. Ninety observations simulated in three dimensions. The obser-
vations are displayed in color for ease of visualization. Left: the first two principal
component directions span the plane that best fits the data. The plane is positioned
to minimize the sum of squared distances to each point. Right: the first two prin-
cipal component score vectors give the coordinates of the projection of the 90
observations onto the plane.

useful: principal components provide low-dimensional linear surfaces that
are closest to the observations. We expand upon that interpretation here.3

The first principal component loading vector has a very special property:
it is the line in p-dimensional space that is closest to the n observations
(using average squared Euclidean distance as a measure of closeness). This
interpretation can be seen in the left-hand panel of Figure 6.15; the dashed
lines indicate the distance between each observation and the line defined
by the first principal component loading vector. The appeal of this inter-
pretation is clear: we seek a single dimension of the data that lies as close
as possible to all of the data points, since such a line will likely provide a
good summary of the data.

The notion of principal components as the dimensions that are clos-
est to the n observations extends beyond just the first principal com-
ponent. For instance, the first two principal components of a data set
span the plane that is closest to the n observations, in terms of average
squared Euclidean distance. An example is shown in the left-hand panel
of Figure 12.2. The first three principal components of a data set span
the three-dimensional hyperplane that is closest to the n observations, and
so forth.

Using this interpretation, together the first M principal component score
vectors and the first M principal component loading vectors provide the
best M -dimensional approximation (in terms of Euclidean distance) to

3In this section, we continue to assume that each column of the data matrix X has
been centered to have mean zero—that is, the column mean has been subtracted from
each column.

510 12. Unsupervised Learning

the ith observation xij . This representation can be written as

xij ≈
M∑

m=1

zimφjm. (12.5)

We can state this more formally by writing down an optimization prob-
lem. Suppose the data matrix X is column-centered. Out of all approxima-
tions of the form xij ≈

∑M
m=1 aimbjm, we could ask for the one with the

smallest residual sum of squares:

minimize
A∈Rn×M ,B∈Rp×M






p∑

j=1

n∑

i=1

(
xij −

M∑

m=1

aimbjm

)2



 . (12.6)

Here, A is an n×M matrix whose (i,m) element is aim, and B is a p×M
element whose (j,m) element is bjm.

It can be shown that for any value of M , the columns of the matrices
Â and B̂ that solve (12.6) are in fact the first M principal components
score and loading vectors. In other words, if Â and B̂ solve (12.6), then
âim = zim and b̂jm = φjm.4 This means that the smallest possible value of
the objective in (12.6) is

p∑

j=1

n∑

i=1

(
xij −

M∑

m=1

zimφjm

)2

. (12.7)

In summary, together the M principal component score vectors and M
principal component loading vectors can give a good approximation to the
data when M is sufficiently large. When M = min(n − 1, p), then the
representation is exact: xij =

∑M
m=1 zimφjm.

12.2.3 The Proportion of Variance Explained
In Figure 12.2, we performed PCA on a three-dimensional data set (left-
hand panel) and projected the data onto the first two principal component
loading vectors in order to obtain a two-dimensional view of the data (i.e.
the principal component score vectors; right-hand panel). We see that this
two-dimensional representation of the three-dimensional data does success-
fully capture the major pattern in the data: the orange, green, and cyan
observations that are near each other in three-dimensional space remain
nearby in the two-dimensional representation. Similarly, we have seen on
the USArrests data set that we can summarize the 50 observations and 4
variables using just the first two principal component score vectors and the
first two principal component loading vectors.

We can now ask a natural question: how much of the information in
a given data set is lost by projecting the observations onto the first few
principal components? That is, how much of the variance in the data is not
contained in the first few principal components? More generally, we are
interested in knowing the proportion of variance explained (PVE) by each proportion

of variance
explained4Technically, the solution to (12.6) is not unique. Thus, it is more precise to state

that any solution to (12.6) can be easily transformed to yield the principal components.

12.2 Principal Components Analysis 511

principal component. The total variance present in a data set (assuming
that the variables have been centered to have mean zero) is defined as

p∑

j=1

Var(Xj) =
p∑

j=1

1

n

n∑

i=1

x2
ij , (12.8)

and the variance explained by the mth principal component is

1

n

n∑

i=1

z2im =
1

n

n∑

i=1




p∑

j=1

φjmxij




2

. (12.9)

Therefore, the PVE of the mth principal component is given by

∑n
i=1 z

2
im∑p

j=1

∑n
i=1 x

2
ij

=

∑n
i=1

(∑p
j=1 φjmxij

)2

∑p
j=1

∑n
i=1 x

2
ij

. (12.10)

The PVE of each principal component is a positive quantity. In order to
compute the cumulative PVE of the first M principal components, we can
simply sum (12.10) over each of the first M PVEs. In total, there are
min(n− 1, p) principal components, and their PVEs sum to one.

In Section 12.2.2, we showed that the first M principal component load-
ing and score vectors can be interpreted as the best M -dimensional approx-
imation to the data, in terms of residual sum of squares. It turns out that
the variance of the data can be decomposed into the variance of the first M
principal components plus the mean squared error of this M -dimensional
approximation, as follows:

p∑

j=1

1
n

n∑

i=1

x2
ij

︸ ︷︷ ︸
Var. of data

=
M∑

m=1

1
n

n∑

i=1

z2im

︸ ︷︷ ︸
Var. of first M PCs

+
1
n

p∑

j=1

n∑

i=1

(
xij −

M∑

m=1

zimφjm

)2

︸ ︷︷ ︸
MSE of M-dimensional approximation

(12.11)

The three terms in this decomposition are discussed in (12.8), (12.9), and
(12.7), respectively. Since the first term is fixed, we see that by maximizing
the variance of the first M principal components, we minimize the mean
squared error of the M -dimensional approximation, and vice versa. This ex-
plains why principal components can be equivalently viewed as minimizing
the approximation error (as in Section 12.2.2) or maximizing the variance
(as in Section 12.2.1).

Moreover, we can use (12.11) to see that the PVE defined in (12.10)
equals

1−

∑p
j=1

∑n
i=1

(
xij −

∑M
m=1 zimφjm

)2

∑p
j=1

∑n
i=1 x

2
ij

= 1− RSS
TSS ,

where TSS represents the total sum of squared elements of X, and RSS
represents the residual sum of squares of the M -dimensional approxima-
tion given by the principal components. Recalling the definition of R2 from
(3.17), this means that we can interpret the PVE as the R2 of the approx-
imation for X given by the first M principal components.

512 12. Unsupervised Learning

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Principal Component

Pr
op

. V
ar

ia
nc

e
Ex

pl
ai

ne
d

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Principal Component

C
um

ul
at

iv
e

Pr
op

. V
ar

ia
nc

e
Ex

pl
ai

ne
d

FIGURE 12.3. Left: a scree plot depicting the proportion of variance explained
by each of the four principal components in the USArrests data. Right: the cu-
mulative proportion of variance explained by the four principal components in the
USArrests data.

In the USArrests data, the first principal component explains 62.0 % of
the variance in the data, and the next principal component explains 24.7 %
of the variance. Together, the first two principal components explain almost
87 % of the variance in the data, and the last two principal components
explain only 13 % of the variance. This means that Figure 12.1 provides a
pretty accurate summary of the data using just two dimensions. The PVE
of each principal component, as well as the cumulative PVE, is shown
in Figure 12.3. The left-hand panel is known as a scree plot, and will be scree plotdiscussed later in this chapter.

12.2.4 More on PCA
Scaling the Variables
We have already mentioned that before PCA is performed, the variables
should be centered to have mean zero. Furthermore, the results obtained
when we perform PCA will also depend on whether the variables have
been individually scaled (each multiplied by a different constant). This is in
contrast to some other supervised and unsupervised learning techniques,
such as linear regression, in which scaling the variables has no effect. (In
linear regression, multiplying a variable by a factor of c will simply lead to
multiplication of the corresponding coefficient estimate by a factor of 1/c,
and thus will have no substantive effect on the model obtained.)

For instance, Figure 12.1 was obtained after scaling each of the variables
to have standard deviation one. This is reproduced in the left-hand plot in
Figure 12.4. Why does it matter that we scaled the variables? In these data,
the variables are measured in different units; Murder, Rape, and Assault are
reported as the number of occurrences per 100, 000 people, and UrbanPop is
the percentage of the state’s population that lives in an urban area. These
four variables have variances of 18.97, 87.73, 6945.16, and 209.5, respec-
tively. Consequently, if we perform PCA on the unscaled variables, then

12.2 Principal Components Analysis 513

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

First Principal Component

Se
co

nd
 P

rin
ci

pa
l C

om
po

ne
nt

* *

*

*

*

**

*
*

*

*

*

*
** *

* *
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

* *

*

*

*

*

*

*

*

*

−0.5 0.0 0.5

−0
.5

0.
0

0.
5

Murder

Assault

UrbanPop

Rape

Scaled

−100 −50 0 50 100 150

−1
00

−5
0

0
50

10
0

15
0

First Principal Component

Se
co

nd
 P

rin
ci

pa
l C

om
po

ne
nt

* *

*
*

* *

*

*

*
*** *

* ** *
*

**

*

*
**

*
*

*
*

*

*
*

* * ** *

** *
**

*
*

*

*

*
*

−0.5 0.0 0.5 1.0

−0
.5

0.
0

0.
5

1.
0

Murder Assault

UrbanPop

Rape

Unscaled

FIGURE 12.4. Two principal component biplots for the USArrests data. Left:
the same as Figure 12.1, with the variables scaled to have unit standard deviations.
Right: principal components using unscaled data. Assault has by far the largest
loading on the first principal component because it has the highest variance among
the four variables. In general, scaling the variables to have standard deviation one
is recommended.

the first principal component loading vector will have a very large loading
for Assault, since that variable has by far the highest variance. The right-
hand plot in Figure 12.4 displays the first two principal components for the
USArrests data set, without scaling the variables to have standard devia-
tion one. As predicted, the first principal component loading vector places
almost all of its weight on Assault, while the second principal component
loading vector places almost all of its weight on UrbanPop. Comparing this
to the left-hand plot, we see that scaling does indeed have a substantial
effect on the results obtained.

However, this result is simply a consequence of the scales on which the
variables were measured. For instance, if Assault were measured in units
of the number of occurrences per 100 people (rather than number of oc-
currences per 100, 000 people), then this would amount to dividing all of
the elements of that variable by 1, 000. Then the variance of the variable
would be tiny, and so the first principal component loading vector would
have a very small value for that variable. Because it is undesirable for the
principal components obtained to depend on an arbitrary choice of scaling,
we typically scale each variable to have standard deviation one before we
perform PCA.

In certain settings, however, the variables may be measured in the same
units. In this case, we might not wish to scale the variables to have stan-
dard deviation one before performing PCA. For instance, suppose that the
variables in a given data set correspond to expression levels for p genes.
Then since expression is measured in the same “units” for each gene, we
might choose not to scale the genes to each have standard deviation one.

514 12. Unsupervised Learning

Uniqueness of the Principal Components
While in theory the principal components need not be unique, in almost all
practical settings they are (up to sign flips). This means that two different
software packages will yield the same principal component loading vectors,
although the signs of those loading vectors may differ. The signs may differ
because each principal component loading vector specifies a direction in p-
dimensional space: flipping the sign has no effect as the direction does not
change. (Consider Figure 6.14—the principal component loading vector is
a line that extends in either direction, and flipping its sign would have no
effect.) Similarly, the score vectors are unique up to a sign flip, since the
variance of Z is the same as the variance of −Z. It is worth noting that
when we use (12.5) to approximate xij we multiply zim by φjm. Hence, if
the sign is flipped on both the loading and score vectors, the final product
of the two quantities is unchanged.

Deciding How Many Principal Components to Use
In general, an n × p data matrix X has min(n − 1, p) distinct principal
components. However, we usually are not interested in all of them; rather,
we would like to use just the first few principal components in order to
visualize or interpret the data. In fact, we would like to use the smallest
number of principal components required to get a good understanding of the
data. How many principal components are needed? Unfortunately, there is
no single (or simple!) answer to this question.

We typically decide on the number of principal components required
to visualize the data by examining a scree plot, such as the one shown
in the left-hand panel of Figure 12.3. We choose the smallest number of
principal components that are required in order to explain a sizable amount
of the variation in the data. This is done by eyeballing the scree plot, and
looking for a point at which the proportion of variance explained by each
subsequent principal component drops off. This drop is often referred to
as an elbow in the scree plot. For instance, by inspection of Figure 12.3,
one might conclude that a fair amount of variance is explained by the first
two principal components, and that there is an elbow after the second
component. After all, the third principal component explains less than ten
percent of the variance in the data, and the fourth principal component
explains less than half that and so is essentially worthless.

However, this type of visual analysis is inherently ad hoc. Unfortunately,
there is no well-accepted objective way to decide how many principal com-
ponents are enough. In fact, the question of how many principal compo-
nents are enough is inherently ill-defined, and will depend on the specific
area of application and the specific data set. In practice, we tend to look
at the first few principal components in order to find interesting patterns
in the data. If no interesting patterns are found in the first few principal
components, then further principal components are unlikely to be of inter-
est. Conversely, if the first few principal components are interesting, then
we typically continue to look at subsequent principal components until no
further interesting patterns are found. This is admittedly a subjective ap-

12.3 Missing Values and Matrix Completion 515

proach, and is reflective of the fact that PCA is generally used as a tool for
exploratory data analysis.

On the other hand, if we compute principal components for use in a
supervised analysis, such as the principal components regression presented
in Section 6.3.1, then there is a simple and objective way to determine how
many principal components to use: we can treat the number of principal
component score vectors to be used in the regression as a tuning parameter
to be selected via cross-validation or a related approach. The comparative
simplicity of selecting the number of principal components for a supervised
analysis is one manifestation of the fact that supervised analyses tend to
be more clearly defined and more objectively evaluated than unsupervised
analyses.

12.2.5 Other Uses for Principal Components
We saw in Section 6.3.1 that we can perform regression using the principal
component score vectors as features. In fact, many statistical techniques,
such as regression, classification, and clustering, can be easily adapted to
use the n ×M matrix whose columns are the first M 0 p principal com-
ponent score vectors, rather than using the full n × p data matrix. This
can lead to less noisy results, since it is often the case that the signal (as
opposed to the noise) in a data set is concentrated in its first few principal
components.

12.3 Missing Values and Matrix Completion
Often datasets have missing values, which can be a nuisance. For example,
suppose that we wish to analyze the USArrests data, and discover that 20
of the 200 values have been randomly corrupted and marked as missing.
Unfortunately, the statistical learning methods that we have seen in this
book cannot handle missing values. How should we proceed?

We could remove the rows that contain missing observations and per-
form our data analysis on the complete rows. But this seems wasteful, and
depending on the fraction missing, unrealistic. Alternatively, if xij is miss-
ing, then we could replace it by the mean of the jth column (using the
non-missing entries to compute the mean). Although this is a common and
convenient strategy, often we can do better by exploiting the correlation
between the variables.

In this section we show how principal components can be used to impute impute
imputationthe missing values, through a process known as matrix completion. The
matrix
completion

completed matrix can then be used in a statistical learning method, such
as linear regression or LDA.

This approach for imputing missing data is appropriate if the missingness
is random. For example, it is suitable if a patient’s weight is missing because missing at

randomthe battery of the electronic scale was flat at the time of his exam. By
contrast, if the weight is missing because the patient was too heavy to
climb on the scale, then this is not missing at random; the missingness is

516 12. Unsupervised Learning

informative, and the approach described here for handling missing data is
not suitable.

Sometimes data is missing by necessity. For example, if we form a matrix
of the ratings (on a scale from 1 to 5) that n customers have given to the
entire Netflix catalog of p movies, then most of the matrix will be missing,
since no customer will have seen and rated more than a tiny fraction of the
catalog. If we can impute the missing values well, then we will have an idea
of what each customer will think of movies they have not yet seen. Hence
matrix completion can be used to power recommender systems. recommender

systems
Principal Components with Missing Values
In Section 12.2.2, we showed that the first M principal component score
and loading vectors provide the “best” approximation to the data matrix
X, in the sense of (12.6). Suppose that some of the observations xij are
missing. We now show how one can both impute the missing values and
solve the principal component problem at the same time. We return to a
modified form of the optimization problem (12.6),

minimize
A∈Rn×M ,B∈Rp×M





∑

(i,j)∈O

(
xij −

M∑

m=1

aimbjm

)2



 , (12.12)

where O is the set of all observed pairs of indices (i, j), a subset of the
possible n× p pairs.

Once we solve this problem:

• we can estimate a missing observation xij using x̂ij =
∑M

m=1 âimb̂jm,
where âim and b̂jm are the (i,m) and (j,m) elements, respectively,
of the matrices Â and B̂ that solve (12.12); and

• we can (approximately) recover the M principal component scores
and loadings, as we did when the data were complete.

It turns out that solving (12.12) exactly is difficult, unlike in the case of
complete data: the eigen decomposition no longer applies. But the sim-
ple iterative approach in Algorithm 12.1, which is demonstrated in Sec-
tion 12.5.2, typically provides a good solution.56

We illustrate Algorithm 12.1 on the USArrests data. There are p = 4
variables and n = 50 observations (states). We first standardized the data
so each variable has mean zero and standard deviation one. We then ran-
domly selected 20 of the 50 states, and then for each of these we randomly
set one of the four variables to be missing. Thus, 10% of the elements of the
data matrix were missing. We applied Algorithm 12.1 with M = 1 principal
component. Figure 12.5 shows that the recovery of the missing elements

5This algorithm is referred to as “Hard-Impute” in Mazumder, Hastie, and Tibshi-
rani (2010) “Spectral regularization algorithms for learning large incomplete matrices”,
published in Journal of Machine Learning Research, pages 2287–2322.

6Each iteration of Step 2 of this algorithm decreases the objective (12.14). However,
the algorithm is not guaranteed to achieve the global optimum of (12.12).

12.3 Missing Values and Matrix Completion 517

Algorithm 12.1 Iterative Algorithm for Matrix Completion

1. Create a complete data matrix X̃ of dimension n × p of which the
(i, j) element equals

x̃ij =

{
xij if (i, j) ∈ O
x̄j if (i, j) /∈ O,

where x̄j is the average of the observed values for the jth variable in
the incomplete data matrix X. Here, O indexes the observations that
are observed in X.

2. Repeat steps (a)–(c) until the objective (12.14) fails to decrease:

(a) Solve

minimize
A∈Rn×M ,B∈Rp×M






p∑

j=1

n∑

i=1

(
x̃ij −

M∑

m=1

aimbjm

)2



 (12.13)

by computing the principal components of X̃.
(b) For each element (i, j) /∈ O, set x̃ij ←

∑M
m=1 âimb̂jm.

(c) Compute the objective

∑

(i,j)∈O

(
xij −

M∑

m=1

âimb̂jm

)2

. (12.14)

3. Return the estimated missing entries x̃ij , (i, j) /∈ O.

is pretty accurate. Over 100 random runs of this experiment, the average
correlation between the true and imputed values of the missing elements
is 0.63, with a standard deviation of 0.11. Is this good performance? To
answer this question, we can compare this correlation to what we would
have gotten if we had estimated these 20 values using the complete data
— that is, if we had simply computed x̂ij = zi1φj1, where zi1 and φj1 are
elements of the first principal component score and loading vectors of the
complete data.7 Using the complete data in this way results in an average
correlation of 0.79 between the true and estimated values for these 20 el-
ements, with a standard deviation of 0.08. Thus, our imputation method
does worse than the method that uses all of the data (0.63 ± 0.11 versus
0.79 ± 0.08), but its performance is still pretty good. (And of course, the
method that uses all of the data cannot be applied in a real-world setting
with missing data.)

Figure 12.6 further indicates that Algorithm 12.1 performs fairly well on
this dataset.

7This is an unattainable gold standard, in the sense that with missing data, we of
course cannot compute the principal components of the complete data.

518 12. Unsupervised Learning

FIGURE 12.5. Missing value imputation on the USArrests data. Twenty values
(10% of the total number of matrix elements) were artificially set to be missing,
and then imputed via Algorithm 12.1 with M = 1. The figure displays the true
value xij and the imputed value x̂ij for all twenty missing values. For each of the
twenty missing values, the color indicates the variable, and the label indicates the
state. The correlation between the true and imputed values is around 0.63.

We close with a few observations:

• The USArrests data has only four variables, which is on the low end
for methods like Algorithm 12.1 to work well. For this reason, for this
demonstration we randomly set at most one variable per state to be
missing, and only used M = 1 principal component.

• In general, in order to apply Algorithm 12.1, we must select M , the
number of principal components to use for the imputation. One ap-
proach is to randomly leave out a few additional elements from the
matrix, and select M based on how well those known values are re-
covered. This is closely related to the validation-set approach seen in
Chapter 5.

Recommender Systems
Digital streaming services like Netflix and Amazon use data about the con-
tent that a customer has viewed in the past, as well as data from other
customers, to suggest other content for the customer. As a concrete ex-
ample, some years back, Netflix had customers rate each movie that they
had seen with a score from 1–5. This resulted in a very big n × p matrix
for which the (i, j) element is the rating given by the ith customer to the

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Original Value

Im
pu

te
d

Va
lu

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

OR

WA

TN

PA

MO

ID

MD

VA

AL

TX

WY

MN

AK

UT

GA

MT

MA

NY

●

●

●

●

Murder
Assault
UrbanPop
Rape

12.3 Missing Values and Matrix Completion 519

FIGURE 12.6. As described in the text, in each of 100 trials, we left out 20
elements of the USArrests dataset. In each trial, we applied Algorithm 12.1 with
M = 1 to impute the missing elements and compute the principal components.
Left: For each of the 50 states, the imputed first principal component scores
(averaged over 100 trials, and displayed with a standard deviation bar) are plotted
against the first principal component scores computed using all the data. Right:
The imputed principal component loadings (averaged over 100 trials, and displayed
with a standard deviation bar) are plotted against the true principal component
loadings.

jth movie. One specific early example of this matrix had n = 480,189 cus-
tomers and p = 17,770 movies. However, on average each customer had seen
around 200 movies, so 99% of the matrix had missing elements. Table 12.2
illustrates the setup.

In order to suggest a movie that a particular customer might like, Netflix
needed a way to impute the missing values of this data matrix. The key idea
is as follows: the set of movies that the ith customer has seen will overlap
with those that other customers have seen. Furthermore, some of those
other customers will have similar movie preferences to the ith customer.
Thus, it should be possible to use similar customers’ ratings of movies that
the ith customer has not seen to predict whether the ith customer will like
those movies.

More concretely, by applying Algorithm 12.1, we can predict the ith cus-
tomer’s rating for the jth movie using x̂ij =

∑M
m=1 âimb̂jm. Furthermore,

we can interpret the M components in terms of “cliques” and “genres”:

• âim represents the strength with which the ith user belongs to the
mth clique, where a clique is a group of customers that enjoys movies
of the mth genre;

• b̂jm represents the strength with which the jth movie belongs to the
mth genre.

Examples of genres include Romance, Western, and Action.
Principal component models similar to Algorithm 12.1 are at the heart

of many recommender systems. Although the data matrices involved are

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

True First Principal Component

Im
pu

te
d

Fi
rs

t P
rin

ci
pa

l C
om

po
ne

nt

●●

●

●
●●
●●●
●●●

●●
●
●●
●●

●

●
●●
●●
●●●

●●●
●
●●●●●

●●
●

●●

●●
●
●●
●

●
●

2 4 6 8 10 12

2
4

6
8

10
12

True PC Variances

Im
pu

te
d

P
C

 V
ar

ia
nc

es

●

●

●

●

520 12. Unsupervised Learning

Jer
ry

Magu
ire

Ocea
ns

Road
to

Perd
itio

n

A
Fo

rtu
na

te
Man

Catc
h Me If You

Can

Driv
ing

Miss
Dais

y

The
Two Pop

es

The
Lau

nd
rom

at

Cod
e 8

The
So

cia
l Netw

ork

· · ·

Customer 1 • • • • 4 • • • • • · · ·
Customer 2 • • 3 • • • 3 • • 3 · · ·
Customer 3 • 2 • 4 • • • • 2 • · · ·
Customer 4 3 • • • • • • • • • · · ·
Customer 5 5 1 • • 4 • • • • • · · ·
Customer 6 • • • • • 2 4 • • • · · ·
Customer 7 • • 5 • • • • 3 • • · · ·
Customer 8 • • • • • • • • • • · · ·
Customer 9 3 • • • 5 • • 1 • • · · ·

...
...

...
...

...
...

...
...

...
...

...
. . .

TABLE 12.2. Excerpt of the Netflix movie rating data. The movies are rated
from 1 (worst) to 5 (best). The symbol • represents a missing value: a movie that
was not rated by the corresponding customer.

typically massive, algorithms have been developed that can exploit the high
level of missingness in order to perform efficient computations.

12.4 Clustering Methods
Clustering refers to a very broad set of techniques for finding subgroups, or clusteringclusters, in a data set. When we cluster the observations of a data set, we
seek to partition them into distinct groups so that the observations within
each group are quite similar to each other, while observations in different
groups are quite different from each other. Of course, to make this concrete,
we must define what it means for two or more observations to be similar
or different. Indeed, this is often a domain-specific consideration that must
be made based on knowledge of the data being studied.

For instance, suppose that we have a set of n observations, each with p
features. The n observations could correspond to tissue samples for patients
with breast cancer, and the p features could correspond to measurements
collected for each tissue sample; these could be clinical measurements, such
as tumor stage or grade, or they could be gene expression measurements.
We may have a reason to believe that there is some heterogeneity among
the n tissue samples; for instance, perhaps there are a few different un-
known subtypes of breast cancer. Clustering could be used to find these
subgroups. This is an unsupervised problem because we are trying to dis-
cover structure—in this case, distinct clusters—on the basis of a data set.
The goal in supervised problems, on the other hand, is to try to predict
some outcome vector such as survival time or response to drug treatment.

Both clustering and PCA seek to simplify the data via a small number
of summaries, but their mechanisms are different:

12.4 Clustering Methods 521

• PCA looks to find a low-dimensional representation of the observa-
tions that explain a good fraction of the variance;

• Clustering looks to find homogeneous subgroups among the observa-
tions.

Another application of clustering arises in marketing. We may have ac-
cess to a large number of measurements (e.g. median household income,
occupation, distance from nearest urban area, and so forth) for a large
number of people. Our goal is to perform market segmentation by identify-
ing subgroups of people who might be more receptive to a particular form
of advertising, or more likely to purchase a particular product. The task of
performing market segmentation amounts to clustering the people in the
data set.

Since clustering is popular in many fields, there exist a great num-
ber of clustering methods. In this section we focus on perhaps the two
best-known clustering approaches: K-means clustering and hierarchical

K-means
clusteringclustering. In K-means clustering, we seek to partition the observations
hierarchical
clustering

into a pre-specified number of clusters. On the other hand, in hierarchical
clustering, we do not know in advance how many clusters we want; in fact,
we end up with a tree-like visual representation of the observations, called
a dendrogram, that allows us to view at once the clusterings obtained for dendrogrameach possible number of clusters, from 1 to n. There are advantages and
disadvantages to each of these clustering approaches, which we highlight in
this chapter.

In general, we can cluster observations on the basis of the features in
order to identify subgroups among the observations, or we can cluster fea-
tures on the basis of the observations in order to discover subgroups among
the features. In what follows, for simplicity we will discuss clustering obser-
vations on the basis of the features, though the converse can be performed
by simply transposing the data matrix.

12.4.1 K-Means Clustering
K-means clustering is a simple and elegant approach for partitioning a
data set into K distinct, non-overlapping clusters. To perform K-means
clustering, we must first specify the desired number of clusters K; then the
K-means algorithm will assign each observation to exactly one of the K
clusters. Figure 12.7 shows the results obtained from performing K-means
clustering on a simulated example consisting of 150 observations in two
dimensions, using three different values of K.

The K-means clustering procedure results from a simple and intuitive
mathematical problem. We begin by defining some notation. Let C1, . . . , CK

denote sets containing the indices of the observations in each cluster. These
sets satisfy two properties:

1. C1 ∪ C2 ∪ · · · ∪ CK = {1, . . . , n}. In other words, each observation
belongs to at least one of the K clusters.

2. Ck ∩ Ck′ = ∅ for all k %= k′. In other words, the clusters are non-
overlapping: no observation belongs to more than one cluster.

522 12. Unsupervised Learning

K=2 K=3 K=4

FIGURE 12.7. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K-means clustering with different values
of K, the number of clusters. The color of each observation indicates the cluster
to which it was assigned using the K-means clustering algorithm. Note that there
is no ordering of the clusters, so the cluster coloring is arbitrary. These cluster
labels were not used in clustering; instead, they are the outputs of the clustering
procedure.

For instance, if the ith observation is in the kth cluster, then i ∈ Ck. The
idea behind K-means clustering is that a good clustering is one for which the
within-cluster variation is as small as possible. The within-cluster variation
for cluster Ck is a measure W (Ck) of the amount by which the observations
within a cluster differ from each other. Hence we want to solve the problem

minimize
C1,...,CK

{
K∑

k=1

W (Ck)

}
. (12.15)

In words, this formula says that we want to partition the observations into
K clusters such that the total within-cluster variation, summed over all K
clusters, is as small as possible.

Solving (12.15) seems like a reasonable idea, but in order to make it
actionable we need to define the within-cluster variation. There are many
possible ways to define this concept, but by far the most common choice
involves squared Euclidean distance. That is, we define

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2, (12.16)

where |Ck| denotes the number of observations in the kth cluster. In other
words, the within-cluster variation for the kth cluster is the sum of all of
the pairwise squared Euclidean distances between the observations in the
kth cluster, divided by the total number of observations in the kth cluster.
Combining (12.15) and (12.16) gives the optimization problem that defines

12.4 Clustering Methods 523

K-means clustering,

minimize
C1,...,CK






K∑

k=1

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2




 . (12.17)

Now, we would like to find an algorithm to solve (12.17)—that is, a
method to partition the observations into K clusters such that the objective
of (12.17) is minimized. This is in fact a very difficult problem to solve
precisely, since there are almost Kn ways to partition n observations into K
clusters. This is a huge number unless K and n are tiny! Fortunately, a very
simple algorithm can be shown to provide a local optimum—a pretty good
solution—to the K-means optimization problem (12.17). This approach is
laid out in Algorithm 12.2.

Algorithm 12.2 K-Means Clustering
1. Randomly assign a number, from 1 to K, to each of the observations.

These serve as initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

Algorithm 12.2 is guaranteed to decrease the value of the objective (12.17)
at each step. To understand why, the following identity is illuminating:

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2 = 2

∑

i∈Ck

p∑

j=1

(xij − x̄kj)
2, (12.18)

where x̄kj = 1
|Ck|

∑
i∈Ck

xij is the mean for feature j in cluster Ck.
In Step 2(a) the cluster means for each feature are the constants that
minimize the sum-of-squared deviations, and in Step 2(b), reallocating the
observations can only improve (12.18). This means that as the algorithm
is run, the clustering obtained will continually improve until the result no
longer changes; the objective of (12.17) will never increase. When the result
no longer changes, a local optimum has been reached. Figure 12.8 shows
the progression of the algorithm on the toy example from Figure 12.7.
K-means clustering derives its name from the fact that in Step 2(a), the
cluster centroids are computed as the mean of the observations assigned to
each cluster.

Because the K-means algorithm finds a local rather than a global opti-
mum, the results obtained will depend on the initial (random) cluster as-
signment of each observation in Step 1 of Algorithm 12.2. For this reason,
it is important to run the algorithm multiple times from different random

524 12. Unsupervised Learning

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

FIGURE 12.8. The progress of the K-means algorithm on the example of
Figure 12.7 with K=3. Top left: the observations are shown. Top center: in
Step 1 of the algorithm, each observation is randomly assigned to a cluster. Top
right: in Step 2(a), the cluster centroids are computed. These are shown as large
colored disks. Initially the centroids are almost completely overlapping because
the initial cluster assignments were chosen at random. Bottom left: in Step 2(b),
each observation is assigned to the nearest centroid. Bottom center: Step 2(a) is
once again performed, leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

initial configurations. Then one selects the best solution, i.e. that for which
the objective (12.17) is smallest. Figure 12.9 shows the local optima ob-
tained by running K-means clustering six times using six different initial
cluster assignments, using the toy data from Figure 12.7. In this case, the
best clustering is the one with an objective value of 235.8.

As we have seen, to perform K-means clustering, we must decide how
many clusters we expect in the data. The problem of selecting K is far from
simple. This issue, along with other practical considerations that arise in
performing K-means clustering, is addressed in Section 12.4.3.

12.4 Clustering Methods 525

320.9 235.8 235.8

235.8 235.8 310.9

FIGURE 12.9. K-means clustering performed six times on the data from
Figure 12.7 with K = 3, each time with a different random assignment of the
observations in Step 1 of the K-means algorithm. Above each plot is the value
of the objective (12.17). Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better separation between
the clusters. Those labeled in red all achieved the same best solution, with an
objective value of 235.8.

12.4.2 Hierarchical Clustering
One potential disadvantage of K-means clustering is that it requires us to
pre-specify the number of clusters K. Hierarchical clustering is an alter-
native approach which does not require that we commit to a particular
choice of K. Hierarchical clustering has an added advantage over K-means
clustering in that it results in an attractive tree-based representation of the
observations, called a dendrogram.

In this section, we describe bottom-up or agglomerative clustering. bottom-up
agglomerativeThis is the most common type of hierarchical clustering, and refers to

the fact that a dendrogram (generally depicted as an upside-down tree; see
Figure 12.11) is built starting from the leaves and combining clusters up to
the trunk. We will begin with a discussion of how to interpret a dendrogram

526 12. Unsupervised Learning

−6 −4 −2 0 2

−2
0

2
4

X1

X
2

FIGURE 12.10. Forty-five observations generated in two-dimensional space.
In reality there are three distinct classes, shown in separate colors. However, we
will treat these class labels as unknown and will seek to cluster the observations
in order to discover the classes from the data.

and then discuss how hierarchical clustering is actually performed—that is,
how the dendrogram is built.

Interpreting a Dendrogram
We begin with the simulated data set shown in Figure 12.10, consisting of
45 observations in two-dimensional space. The data were generated from a
three-class model; the true class labels for each observation are shown in
distinct colors. However, suppose that the data were observed without the
class labels, and that we wanted to perform hierarchical clustering of the
data. Hierarchical clustering (with complete linkage, to be discussed later)
yields the result shown in the left-hand panel of Figure 12.11. How can we
interpret this dendrogram?

In the left-hand panel of Figure 12.11, each leaf of the dendrogram rep-
resents one of the 45 observations in Figure 12.10. However, as we move
up the tree, some leaves begin to fuse into branches. These correspond to
observations that are similar to each other. As we move higher up the tree,
branches themselves fuse, either with leaves or other branches. The earlier
(lower in the tree) fusions occur, the more similar the groups of observa-
tions are to each other. On the other hand, observations that fuse later
(near the top of the tree) can be quite different. In fact, this statement
can be made precise: for any two observations, we can look for the point in
the tree where branches containing those two observations are first fused.
The height of this fusion, as measured on the vertical axis, indicates how
different the two observations are. Thus, observations that fuse at the very
bottom of the tree are quite similar to each other, whereas observations
that fuse close to the top of the tree will tend to be quite different.

This highlights a very important point in interpreting dendrograms that
is often misunderstood. Consider the left-hand panel of Figure 12.12, which
shows a simple dendrogram obtained from hierarchically clustering nine

12.4 Clustering Methods 527

0
2

4
6

8
10

0
2

4
6

8
10

0
2

4
6

8
10

FIGURE 12.11. Left: dendrogram obtained from hierarchically clustering the
data from Figure 12.10 with complete linkage and Euclidean distance. Center: the
dendrogram from the left-hand panel, cut at a height of nine (indicated by the
dashed line). This cut results in two distinct clusters, shown in different colors.
Right: the dendrogram from the left-hand panel, now cut at a height of five. This
cut results in three distinct clusters, shown in different colors. Note that the colors
were not used in clustering, but are simply used for display purposes in this figure.

observations. One can see that observations 5 and 7 are quite similar to
each other, since they fuse at the lowest point on the dendrogram. Obser-
vations 1 and 6 are also quite similar to each other. However, it is tempting
but incorrect to conclude from the figure that observations 9 and 2 are
quite similar to each other on the basis that they are located near each
other on the dendrogram. In fact, based on the information contained in
the dendrogram, observation 9 is no more similar to observation 2 than it
is to observations 8, 5, and 7. (This can be seen from the right-hand panel
of Figure 12.12, in which the raw data are displayed.) To put it mathe-
matically, there are 2n−1 possible reorderings of the dendrogram, where n
is the number of leaves. This is because at each of the n− 1 points where
fusions occur, the positions of the two fused branches could be swapped
without affecting the meaning of the dendrogram. Therefore, we cannot
draw conclusions about the similarity of two observations based on their
proximity along the horizontal axis. Rather, we draw conclusions about
the similarity of two observations based on the location on the vertical axis
where branches containing those two observations first are fused.

Now that we understand how to interpret the left-hand panel of Fig-
ure 12.11, we can move on to the issue of identifying clusters on the basis
of a dendrogram. In order to do this, we make a horizontal cut across the
dendrogram, as shown in the center and right-hand panels of Figure 12.11.
The distinct sets of observations beneath the cut can be interpreted as clus-
ters. In the center panel of Figure 12.11, cutting the dendrogram at a height
of nine results in two clusters, shown in distinct colors. In the right-hand
panel, cutting the dendrogram at a height of five results in three clusters.
Further cuts can be made as one descends the dendrogram in order to ob-
tain any number of clusters, between 1 (corresponding to no cut) and n

528 12. Unsupervised Learning

3

4

1 6

9

2

8

5 70.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1
2

3

4

5

6

7
8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

X1

X
2

FIGURE 12.12. An illustration of how to properly interpret a dendrogram
with nine observations in two-dimensional space. Left: a dendrogram generated
using Euclidean distance and complete linkage. Observations 5 and 7 are quite
similar to each other, as are observations 1 and 6. However, observation 9 is no
more similar to observation 2 than it is to observations 8, 5, and 7, even though
observations 9 and 2 are close together in terms of horizontal distance. This is
because observations 2, 8, 5, and 7 all fuse with observation 9 at the same height,
approximately 1.8. Right: the raw data used to generate the dendrogram can be
used to confirm that indeed, observation 9 is no more similar to observation 2
than it is to observations 8, 5, and 7.

(corresponding to a cut at height 0, so that each observation is in its own
cluster). In other words, the height of the cut to the dendrogram serves
the same role as the K in K-means clustering: it controls the number of
clusters obtained.

Figure 12.11 therefore highlights a very attractive aspect of hierarchical
clustering: one single dendrogram can be used to obtain any number of
clusters. In practice, people often look at the dendrogram and select by eye
a sensible number of clusters, based on the heights of the fusion and the
number of clusters desired. In the case of Figure 12.11, one might choose
to select either two or three clusters. However, often the choice of where to
cut the dendrogram is not so clear.

The term hierarchical refers to the fact that clusters obtained by cutting
the dendrogram at a given height are necessarily nested within the clusters
obtained by cutting the dendrogram at any greater height. However, on
an arbitrary data set, this assumption of hierarchical structure might be
unrealistic. For instance, suppose that our observations correspond to a
group of men and women, evenly split among Americans, Japanese, and
French. We can imagine a scenario in which the best division into two
groups might split these people by gender, and the best division into three
groups might split them by nationality. In this case, the true clusters are
not nested, in the sense that the best division into three groups does not
result from taking the best division into two groups and splitting up one
of those groups. Consequently, this situation could not be well-represented
by hierarchical clustering. Due to situations such as this one, hierarchical
clustering can sometimes yield worse (i.e. less accurate) results than K-
means clustering for a given number of clusters.

12.4 Clustering Methods 529

Algorithm 12.3 Hierarchical Clustering
1. Begin with n observations and a measure (such as Euclidean dis-

tance) of all the
(n
2

)
= n(n− 1)/2 pairwise dissimilarities. Treat each

observation as its own cluster.

2. For i = n, n− 1, . . . , 2:

(a) Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the i− 1 remaining clusters.

The Hierarchical Clustering Algorithm
The hierarchical clustering dendrogram is obtained via an extremely simple
algorithm. We begin by defining some sort of dissimilarity measure between
each pair of observations. Most often, Euclidean distance is used; we will
discuss the choice of dissimilarity measure later in this chapter. The algo-
rithm proceeds iteratively. Starting out at the bottom of the dendrogram,
each of the n observations is treated as its own cluster. The two clusters
that are most similar to each other are then fused so that there now are
n−1 clusters. Next the two clusters that are most similar to each other are
fused again, so that there now are n − 2 clusters. The algorithm proceeds
in this fashion until all of the observations belong to one single cluster, and
the dendrogram is complete. Figure 12.13 depicts the first few steps of the
algorithm, for the data from Figure 12.12. To summarize, the hierarchical
clustering algorithm is given in Algorithm 12.3.

This algorithm seems simple enough, but one issue has not been ad-
dressed. Consider the bottom right panel in Figure 12.13. How did we
determine that the cluster {5, 7} should be fused with the cluster {8}?
We have a concept of the dissimilarity between pairs of observations, but
how do we define the dissimilarity between two clusters if one or both of
the clusters contains multiple observations? The concept of dissimilarity
between a pair of observations needs to be extended to a pair of groups
of observations. This extension is achieved by developing the notion of
linkage, which defines the dissimilarity between two groups of observa- linkagetions. The four most common types of linkage—complete, average, single,
and centroid—are briefly described in Table 12.3. Average, complete, and
single linkage are most popular among statisticians. Average and complete
linkage are generally preferred over single linkage, as they tend to yield
more balanced dendrograms. Centroid linkage is often used in genomics,
but suffers from a major drawback in that an inversion can occur, whereby inversiontwo clusters are fused at a height below either of the individual clusters in
the dendrogram. This can lead to difficulties in visualization as well as in in-
terpretation of the dendrogram. The dissimilarities computed in Step 2(b)

530 12. Unsupervised Learning

Linkage Description

Complete
Maximal intercluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and the
observations in cluster B, and record the largest of these dis-
similarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average
Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

TABLE 12.3. A summary of the four most commonly-used types of linkage in
hierarchical clustering.

of the hierarchical clustering algorithm will depend on the type of linkage
used, as well as on the choice of dissimilarity measure. Hence, the resulting
dendrogram typically depends quite strongly on the type of linkage used,
as is shown in Figure 12.14.

Choice of Dissimilarity Measure
Thus far, the examples in this chapter have used Euclidean distance as the
dissimilarity measure. But sometimes other dissimilarity measures might
be preferred. For example, correlation-based distance considers two obser-
vations to be similar if their features are highly correlated, even though the
observed values may be far apart in terms of Euclidean distance. This is
an unusual use of correlation, which is normally computed between vari-
ables; here it is computed between the observation profiles for each pair
of observations. Figure 12.15 illustrates the difference between Euclidean
and correlation-based distance. Correlation-based distance focuses on the
shapes of observation profiles rather than their magnitudes.

The choice of dissimilarity measure is very important, as it has a strong
effect on the resulting dendrogram. In general, careful attention should be
paid to the type of data being clustered and the scientific question at hand.
These considerations should determine what type of dissimilarity measure
is used for hierarchical clustering.

For instance, consider an online retailer interested in clustering shoppers
based on their past shopping histories. The goal is to identify subgroups
of similar shoppers, so that shoppers within each subgroup can be shown
items and advertisements that are particularly likely to interest them. Sup-
pose the data takes the form of a matrix where the rows are the shoppers
and the columns are the items available for purchase; the elements of the
data matrix indicate the number of times a given shopper has purchased a

12.4 Clustering Methods 531

1
2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1
2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1
2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1
2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

X1X1

X1X1

X
2

X
2

X
2

X
2

FIGURE 12.13. An illustration of the first few steps of the hierarchical
clustering algorithm, using the data from Figure 12.12, with complete linkage
and Euclidean distance. Top Left: initially, there are nine distinct clusters,
{1}, {2}, . . . , {9}. Top Right: the two clusters that are closest together, {5} and
{7}, are fused into a single cluster. Bottom Left: the two clusters that are closest
together, {6} and {1}, are fused into a single cluster. Bottom Right: the two clus-
ters that are closest together using complete linkage, {8} and the cluster {5, 7},
are fused into a single cluster.

given item (i.e. a 0 if the shopper has never purchased this item, a 1 if the
shopper has purchased it once, etc.) What type of dissimilarity measure
should be used to cluster the shoppers? If Euclidean distance is used, then
shoppers who have bought very few items overall (i.e. infrequent users of
the online shopping site) will be clustered together. This may not be desir-
able. On the other hand, if correlation-based distance is used, then shoppers
with similar preferences (e.g. shoppers who have bought items A and B but
never items C or D) will be clustered together, even if some shoppers with
these preferences are higher-volume shoppers than others. Therefore, for
this application, correlation-based distance may be a better choice.

In addition to carefully selecting the dissimilarity measure used, one must
also consider whether or not the variables should be scaled to have stan-
dard deviation one before the dissimilarity between the observations is com-
puted. To illustrate this point, we continue with the online shopping ex-

532 12. Unsupervised Learning

Average Linkage Complete Linkage Single Linkage

FIGURE 12.14. Average, complete, and single linkage applied to an example
data set. Average and complete linkage tend to yield more balanced clusters.

ample just described. Some items may be purchased more frequently than
others; for instance, a shopper might buy ten pairs of socks a year, but a
computer very rarely. High-frequency purchases like socks therefore tend
to have a much larger effect on the inter-shopper dissimilarities, and hence
on the clustering ultimately obtained, than rare purchases like computers.
This may not be desirable. If the variables are scaled to have standard de-
viation one before the inter-observation dissimilarities are computed, then
each variable will in effect be given equal importance in the hierarchical
clustering performed. We might also want to scale the variables to have
standard deviation one if they are measured on different scales; otherwise,
the choice of units (e.g. centimeters versus kilometers) for a particular vari-
able will greatly affect the dissimilarity measure obtained. It should come
as no surprise that whether or not it is a good decision to scale the variables
before computing the dissimilarity measure depends on the application at
hand. An example is shown in Figure 12.16. We note that the issue of
whether or not to scale the variables before performing clustering applies
to K-means clustering as well.

12.4.3 Practical Issues in Clustering
Clustering can be a very useful tool for data analysis in the unsupervised
setting. However, there are a number of issues that arise in performing
clustering. We describe some of these issues here.

Small Decisions with Big Consequences
In order to perform clustering, some decisions must be made.

12.4 Clustering Methods 533

5 10 15 20

0
5

10
15

20

Variable Index

Observation 1
Observation 2
Observation 3

1

2

3

FIGURE 12.15. Three observations with measurements on 20 variables are
shown. Observations 1 and 3 have similar values for each variable and so there
is a small Euclidean distance between them. But they are very weakly correlated,
so they have a large correlation-based distance. On the other hand, observations
1 and 2 have quite different values for each variable, and so there is a large
Euclidean distance between them. But they are highly correlated, so there is a
small correlation-based distance between them.

• Should the observations or features first be standardized in some way?
For instance, maybe the variables should be scaled to have standard
deviation one.

• In the case of hierarchical clustering,

– What dissimilarity measure should be used?
– What type of linkage should be used?
– Where should we cut the dendrogram in order to obtain clusters?

• In the case of K-means clustering, how many clusters should we look
for in the data?

Each of these decisions can have a strong impact on the results obtained.
In practice, we try several different choices, and look for the one with
the most useful or interpretable solution. With these methods, there is no
single right answer—any solution that exposes some interesting aspects of
the data should be considered.

Validating the Clusters Obtained
Any time clustering is performed on a data set we will find clusters. But we
really want to know whether the clusters that have been found represent
true subgroups in the data, or whether they are simply a result of clustering
the noise. For instance, if we were to obtain an independent set of observa-
tions, then would those observations also display the same set of clusters?
This is a hard question to answer. There exist a number of techniques for
assigning a p-value to a cluster in order to assess whether there is more

534 12. Unsupervised Learning

Socks Computers

0
2

4
6

8
10

Socks Computers
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2
Socks Computers

0
50

0
10

00
15

00

FIGURE 12.16. An eclectic online retailer sells two items: socks and computers.
Left: the number of pairs of socks, and computers, purchased by eight online shop-
pers is displayed. Each shopper is shown in a different color. If inter-observation
dissimilarities are computed using Euclidean distance on the raw variables, then
the number of socks purchased by an individual will drive the dissimilarities ob-
tained, and the number of computers purchased will have little effect. This might
be undesirable, since (1) computers are more expensive than socks and so the
online retailer may be more interested in encouraging shoppers to buy computers
than socks, and (2) a large difference in the number of socks purchased by two
shoppers may be less informative about the shoppers’ overall shopping preferences
than a small difference in the number of computers purchased. Center: the same
data are shown, after scaling each variable by its standard deviation. Now the
two products will have a comparable effect on the inter-observation dissimilarities
obtained. Right: the same data are displayed, but now the y-axis represents the
number of dollars spent by each online shopper on socks and on computers. Since
computers are much more expensive than socks, now computer purchase history
will drive the inter-observation dissimilarities obtained.

evidence for the cluster than one would expect due to chance. However,
there has been no consensus on a single best approach. More details can
be found in ESL.8

Other Considerations in Clustering
Both K-means and hierarchical clustering will assign each observation to
a cluster. However, sometimes this might not be appropriate. For instance,
suppose that most of the observations truly belong to a small number of
(unknown) subgroups, and a small subset of the observations are quite
different from each other and from all other observations. Then since K-
means and hierarchical clustering force every observation into a cluster, the
clusters found may be heavily distorted due to the presence of outliers that
do not belong to any cluster. Mixture models are an attractive approach
for accommodating the presence of such outliers. These amount to a soft
version of K-means clustering, and are described in ESL.

8ESL: The Elements of Statistical Learning by Hastie, Tibshirani and Friedman.

12.5 Lab: Unsupervised Learning 535

In addition, clustering methods generally are not very robust to pertur-
bations to the data. For instance, suppose that we cluster n observations,
and then cluster the observations again after removing a subset of the n
observations at random. One would hope that the two sets of clusters ob-
tained would be quite similar, but often this is not the case!

A Tempered Approach to Interpreting the Results of Clustering
We have described some of the issues associated with clustering. However,
clustering can be a very useful and valid statistical tool if used properly. We
mentioned that small decisions in how clustering is performed, such as how
the data are standardized and what type of linkage is used, can have a large
effect on the results. Therefore, we recommend performing clustering with
different choices of these parameters, and looking at the full set of results
in order to see what patterns consistently emerge. Since clustering can be
non-robust, we recommend clustering subsets of the data in order to get a
sense of the robustness of the clusters obtained. Most importantly, we must
be careful about how the results of a clustering analysis are reported. These
results should not be taken as the absolute truth about a data set. Rather,
they should constitute a starting point for the development of a scientific
hypothesis and further study, preferably on an independent data set.

12.5 Lab: Unsupervised Learning
In this lab we demonstrate PCA and clustering on several datasets. As in
other labs, we import some of our libraries at this top level. This makes
the code more readable, as scanning the first few lines of the notebook tell
us what libraries are used in this notebook.

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.datasets import get_rdataset
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from ISLP import load_data

We also collect the new imports needed for this lab.
In [2]: from sklearn.cluster import \

(KMeans,
AgglomerativeClustering)

from scipy.cluster.hierarchy import \
(dendrogram,
cut_tree)

from ISLP.cluster import compute_linkage

12.5.1 Principal Components Analysis
In this lab, we perform PCA on USArrests, a data set in the R computing
environment. We retrieve the data using get_rdataset(), which can fetch get_

rdataset()

536 12. Unsupervised Learning

data from many standard R packages.
The rows of the data set contain the 50 states, in alphabetical order.

In [3]: USArrests = get_rdataset('USArrests').data
USArrests

Out[3]: Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5

Arizona 8.1 294 80 31.0
...

Wisconsin 2.6 53 66 10.8
Wyoming 6.8 161 60 15.6

The columns of the data set contain the four variables.
In [4]: USArrests.columns

Out[4]: Index(['Murder', 'Assault', 'UrbanPop', 'Rape'],
dtype='object')

We first briefly examine the data. We notice that the variables have
vastly different means.

In [5]: USArrests.mean()

Out[5]: Murder 7.788
Assault 170.760
UrbanPop 65.540
Rape 21.232
dtype: float64

Dataframes have several useful methods for computing column-wise sum-
maries. We can also examine the variance of the four variables using the
var() method.

In [6]: USArrests.var()

Out[6]: Murder 18.970465
Assault 6945.165714
UrbanPop 209.518776
Rape 87.729159
dtype: float64

Not surprisingly, the variables also have vastly different variances. The
UrbanPop variable measures the percentage of the population in each state
living in an urban area, which is not a comparable number to the number of
rapes in each state per 100,000 individuals. PCA looks for derived variables
that account for most of the variance in the data set. If we do not scale the
variables before performing PCA, then the principal components would
mostly be driven by the Assault variable, since it has by far the largest
variance. So if the variables are measured in different units or vary widely
in scale, it is recommended to standardize the variables to have standard
deviation one before performing PCA. Typically we set the means to zero
as well.

12.5 Lab: Unsupervised Learning 537

This scaling can be done via the StandardScaler() transform imported
above. We first fit the scaler, which computes the necessary means and
standard deviations and then apply it to our data using the transform
method. As before, we combine these steps using the fit_transform()
method.

In [7]: scaler = StandardScaler(with_std=True,
with_mean=True)

USArrests_scaled = scaler.fit_transform(USArrests)

Having scaled the data, we can then perform principal components analysis
using the PCA() transform from the sklearn.decomposition package. PCA()

In [8]: pcaUS = PCA()

(By default, the PCA() transform centers the variables to have mean zero
though it does not scale them.) The transform pcaUS can be used to find
the PCA scores returned by fit(). Once the fit method has been called,
the pcaUS object also contains a number of useful quantities.

In [9]: pcaUS.fit(USArrests_scaled)

After fitting, the mean_ attribute corresponds to the means of the vari-
ables. In this case, since we centered and scaled the data with scaler() the
means will all be 0.

In [10]: pcaUS.mean_

Out[10]: array([-0., 0., -0., 0.])

The scores can be computed using the transform() method of pcaUS after
it has been fit.

In [11]: scores = pcaUS.transform(USArrests_scaled)

We will plot these scores a bit further down. The components_ attribute
provides the principal component loadings: each row of pcaUS.components_
contains the corresponding principal component loading vector.

In [12]: pcaUS.components_

Out[12]: array([[0.53589947, 0.58318363, 0.27819087, 0.54343209],
[0.41818087, 0.1879856 , -0.87280619, -0.16731864],
[-0.34123273, -0.26814843, -0.37801579, 0.81777791],
[0.6492278 , -0.74340748, 0.13387773, 0.08902432]])

The biplot is a common visualization method used with PCA. It is not
built in as a standard part of sklearn, though there are python packages
that do produce such plots. Here we make a simple biplot manually.

In [13]: i, j = 0, 1 # which components
fig, ax = plt.subplots(1, 1, figsize=(8, 8))
ax.scatter(scores[:,0], scores[:,1])
ax.set_xlabel('PC%d' % (i+1))
ax.set_ylabel('PC%d' % (j+1))
for k in range(pcaUS.components_.shape[1]):

538 12. Unsupervised Learning

ax.arrow(0, 0, pcaUS.components_[i,k], pcaUS.components_[j,k])
ax.text(pcaUS.components_[i,k],

pcaUS.components_[j,k],
USArrests.columns[k])

Notice that this figure is a reflection of Figure 12.1 through the y-axis.
Recall that the principal components are only unique up to a sign change,
so we can reproduce that figure by flipping the signs of the second set of
scores and loadings. We also increase the length of the arrows to emphasize
the loadings.

In [14]: scale_arrow = s_ = 2
scores[:,1] *= -1
pcaUS.components_[1] *= -1 # flip the y-axis
fig, ax = plt.subplots(1, 1, figsize=(8, 8))
ax.scatter(scores[:,0], scores[:,1])
ax.set_xlabel('PC%d' % (i+1))
ax.set_ylabel('PC%d' % (j+1))
for k in range(pcaUS.components_.shape[1]):

ax.arrow(0, 0, s_*pcaUS.components_[i,k], s_*pcaUS.components_[
j,k])

ax.text(s_*pcaUS.components_[i,k],
s_*pcaUS.components_[j,k],
USArrests.columns[k])

The standard deviations of the principal component scores are as follows:
In [15]: scores.std(0, ddof=1)

Out[15]: array([1.5909, 1.0050, 0.6032, 0.4207])

The variance of each score can be extracted directly from the pcaUS object
via the explained_variance_ attribute.

In [16]: pcaUS.explained_variance_

Out[16]: array([2.5309, 1.01 , 0.3638, 0.177])

The proportion of variance explained by each principal component (PVE)
is stored as explained_variance_ratio_:

In [17]: pcaUS.explained_variance_ratio_

Out[17]: array([0.6201, 0.2474, 0.0891, 0.0434])

We see that the first principal component explains 62.0% of the variance
in the data, the next principal component explains 24.7% of the variance,
and so forth. We can plot the PVE explained by each component, as well
as the cumulative PVE. We first plot the proportion of variance explained.

In [18]: %%capture
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
ticks = np.arange(pcaUS.n_components_)+1
ax = axes[0]
ax.plot(ticks,

pcaUS.explained_variance_ratio_ ,
marker='o')

12.5 Lab: Unsupervised Learning 539

ax.set_xlabel('Principal Component');
ax.set_ylabel('Proportion of Variance Explained')
ax.set_ylim([0,1])
ax.set_xticks(ticks)

Notice the use of %%capture, which suppresses the displaying of the partially
completed figure.

In [19]: ax = axes[1]
ax.plot(ticks,

pcaUS.explained_variance_ratio_.cumsum(),
marker='o')

ax.set_xlabel('Principal Component')
ax.set_ylabel('Cumulative Proportion of Variance Explained')
ax.set_ylim([0, 1])
ax.set_xticks(ticks)
fig

The result is similar to that shown in Figure 12.3. Note that the method
cumsum() computes the cumulative sum of the elements of a numeric vector. cumsum()For instance:

In [20]: a = np.array([1,2,8,-3])
np.cumsum(a)

Out[20]: array([1, 3, 11, 8])

12.5.2 Matrix Completion
We now re-create the analysis carried out on the USArrests data in Sec-
tion 12.3.

We saw in Section 12.2.2 that solving the optimization problem (12.6) on
a centered data matrix X is equivalent to computing the first M principal
components of the data. We use our scaled and centered USArrests data as
X below. The singular value decomposition (SVD) is a general algorithm singular

value de-
composition
svd()

for solving (12.6).
In [21]: X = USArrests_scaled

U, D, V = np.linalg.svd(X, full_matrices=False)
U.shape, D.shape, V.shape

Out[21]: ((50, 4), (4,), (4, 4))

The np.linalg.svd() function returns three components, U, D and V. The np.linalg.
svd()matrix V is equivalent to the loading matrix from principal components (up

to an unimportant sign flip). Using the full_matrices=False option ensures
that for a tall matrix the shape of U is the same as the shape of X.

In [22]: V

Out[22]: array([[-0.53589947, -0.58318363, -0.27819087, -0.54343209],
[0.41818087, 0.1879856 , -0.87280619, -0.16731864],
[-0.34123273, -0.26814843, -0.37801579, 0.81777791],
[0.6492278 , -0.74340748, 0.13387773, 0.08902432]])

540 12. Unsupervised Learning

In [23]: pcaUS.components_

Out[23]: array([[0.53589947, 0.58318363, 0.27819087, 0.54343209],
[0.41818087, 0.1879856 , -0.87280619, -0.16731864],
[-0.34123273, -0.26814843, -0.37801579, 0.81777791],
[0.6492278 , -0.74340748, 0.13387773, 0.08902432]])

The matrix U corresponds to a standardized version of the PCA score matrix
(each column standardized to have sum-of-squares one). If we multiply each
column of U by the corresponding element of D, we recover the PCA scores
exactly (up to a meaningless sign flip).

In [24]: (U * D[None,:])[:3]

Out[24]: array([[-0.9856, 1.1334, -0.4443, 0.1563],
[-1.9501, 1.0732, 2.04 , -0.4386],
[-1.7632, -0.746 , 0.0548, -0.8347]])

In [25]: scores[:3]

Out[25]: array([[0.9856, -1.1334, -0.4443, 0.1563],
[1.9501, -1.0732, 2.04 , -0.4386],
[1.7632, 0.746 , 0.0548, -0.8347]])

While it would be possible to carry out this lab using the PCA() estimator,
here we use the np.linalg.svd() function in order to illustrate its use.

We now omit 20 entries in the 50 × 4 data matrix at random. We do
so by first selecting 20 rows (states) at random, and then selecting one of
the four entries in each row at random. This ensures that every row has at
least three observed values.

In [26]: n_omit = 20
np.random.seed(15)
r_idx = np.random.choice(np.arange(X.shape[0]),

n_omit,
replace=False)

c_idx = np.random.choice(np.arange(X.shape[1]),
n_omit,
replace=True)

Xna = X.copy()
Xna[r_idx, c_idx] = np.nan

Here the array r_idx contains 20 integers from 0 to 49; this represents
the states (rows of X) that are selected to contain missing values. And c_idx
contains 20 integers from 0 to 3, representing the features (columns in X)
that contain the missing values for each of the selected states.

We now write some code to implement Algorithm 12.1. We first write a
function that takes in a matrix, and returns an approximation to the matrix
using the svd() function. This will be needed in Step 2 of Algorithm 12.1.

In [27]: def low_rank(X, M=1):
U, D, V = np.linalg.svd(X)
L = U[:,:M] * D[None,:M]
return L.dot(V[:M])

12.5 Lab: Unsupervised Learning 541

To conduct Step 1 of the algorithm, we initialize Xhat — this is X̃ in
Algorithm 12.1 — by replacing the missing values with the column means
of the non-missing entries. These are stored in Xbar below after running
np.nanmean() over the row axis. We make a copy so that when we assign np.nanmean()values to Xhat below we do not also overwrite the values in Xna.

In [28]: Xhat = Xna.copy()
Xbar = np.nanmean(Xhat, axis=0)
Xhat[r_idx, c_idx] = Xbar[c_idx]

Before we begin Step 2, we set ourselves up to measure the progress of
our iterations:

In [29]: thresh = 1e-7
rel_err = 1
count = 0
ismiss = np.isnan(Xna)
mssold = np.mean(Xhat[∼ismiss]**2)
mss0 = np.mean(Xna[∼ismiss]**2)

Here ismiss is a logical matrix with the same dimensions as Xna; a given
element is True if the corresponding matrix element is missing. The notation
∼ismiss negates this boolean vector. This is useful because it allows us to
access both the missing and non-missing entries. We store the mean of the
squared non-missing elements in mss0. We store the mean squared error
of the non-missing elements of the old version of Xhat in mssold (which
currently agrees with mss0). We plan to store the mean squared error of
the non-missing elements of the current version of Xhat in mss, and will then
iterate Step 2 of Algorithm 12.1 until the relative error, defined as (mssold
- mss) / mss0, falls below thresh = 1e-7. 9

In Step 2(a) of Algorithm 12.1, we approximate Xhat using low_rank();
we call this Xapp. In Step 2(b), we use Xapp to update the estimates for
elements in Xhat that are missing in Xna. Finally, in Step 2(c), we compute
the relative error. These three steps are contained in the following while
loop:

In [30]: while rel_err > thresh:
count += 1
Step 2(a)
Xapp = low_rank(Xhat, M=1)
Step 2(b)
Xhat[ismiss] = Xapp[ismiss]
Step 2(c)
mss = np.mean(((Xna - Xapp)[∼ismiss])**2)
rel_err = (mssold - mss) / mss0
mssold = mss
print("Iteration: {0}, MSS:{1:.3f}, Rel.Err {2:.2e}"

.format(count, mss, rel_err))

9Algorithm 12.1 tells us to iterate Step 2 until (12.14) is no longer decreasing. Deter-
mining whether (12.14) is decreasing requires us only to keep track of mssold - mss.
However, in practice, we keep track of (mssold - mss) / mss0 instead: this makes
it so that the number of iterations required for Algorithm 12.1 to converge does not
depend on whether we multiplied the raw data X by a constant factor.

542 12. Unsupervised Learning

Iteration: 1, MSS:0.395, Rel.Err 5.99e-01
Iteration: 2, MSS:0.382, Rel.Err 1.33e-02
Iteration: 3, MSS:0.381, Rel.Err 1.44e-03
Iteration: 4, MSS:0.381, Rel.Err 1.79e-04
Iteration: 5, MSS:0.381, Rel.Err 2.58e-05
Iteration: 6, MSS:0.381, Rel.Err 4.22e-06
Iteration: 7, MSS:0.381, Rel.Err 7.65e-07
Iteration: 8, MSS:0.381, Rel.Err 1.48e-07
Iteration: 9, MSS:0.381, Rel.Err 2.95e-08

We see that after eight iterations, the relative error has fallen below
thresh = 1e-7, and so the algorithm terminates. When this happens, the
mean squared error of the non-missing elements equals 0.381.

Finally, we compute the correlation between the 20 imputed values and
the actual values:

In [31]: np.corrcoef(Xapp[ismiss], X[ismiss])[0,1]

Out[31]: 0.711

In this lab, we implemented Algorithm 12.1 ourselves for didactic pur-
poses. However, a reader who wishes to apply matrix completion to their
data might look to more specialized Python implementations.

12.5.3 Clustering
K-Means Clustering
The estimator sklearn.cluster.KMeans() performs K-means clustering in Kmeans()
Python. We begin with a simple simulated example in which there truly are
two clusters in the data: the first 25 observations have a mean shift relative
to the next 25 observations.

In [32]: np.random.seed(0);
X = np.random.standard_normal((50,2));
X[:25,0] += 3;
X[:25,1] -= 4;

We now perform K-means clustering with K = 2.
In [33]: kmeans = KMeans(n_clusters=2,

random_state=2,
n_init=20).fit(X)

We specify random_state to make the results reproducible. The cluster as-
signments of the 50 observations are contained in kmeans.labels_.

In [34]: kmeans.labels_

Out[34]: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)

The K-means clustering perfectly separated the observations into two clus-
ters even though we did not supply any group information to KMeans(). We
can plot the data, with each observation colored according to its cluster
assignment.

12.5 Lab: Unsupervised Learning 543

In [35]: fig, ax = plt.subplots(1, 1, figsize=(8,8))
ax.scatter(X[:,0], X[:,1], c=kmeans.labels_)
ax.set_title("K-Means Clustering Results with K=2");

Here the observations can be easily plotted because they are two-dimensio-
nal. If there were more than two variables then we could instead perform
PCA and plot the first two principal component score vectors to represent
the clusters.

In this example, we knew that there really were two clusters because
we generated the data. However, for real data, we do not know the true
number of clusters, nor whether they exist in any precise way. We could
instead have performed K-means clustering on this example with K = 3.

In [36]: kmeans = KMeans(n_clusters=3,
random_state=3,
n_init=20).fit(X)

fig, ax = plt.subplots(figsize=(8,8))
ax.scatter(X[:,0], X[:,1], c=kmeans.labels_)
ax.set_title("K-Means Clustering Results with K=3");

When K = 3, K-means clustering splits up the two clusters. We have used
the n_init argument to run the K-means with 20 initial cluster assignments
(the default is 10). If a value of n_init greater than one is used, then K-
means clustering will be performed using multiple random assignments in
Step 1 of Algorithm 12.2, and the KMeans() function will report only the
best results. Here we compare using n_init=1 to n_init=20.

In [37]: kmeans1 = KMeans(n_clusters=3,
random_state=3,
n_init=1).fit(X)

kmeans20 = KMeans(n_clusters=3,
random_state=3,
n_init=20).fit(X);

kmeans1.inertia_, kmeans20.inertia_

Out[37]: (78.06, 75.04)

Note that kmeans.inertia_ is the total within-cluster sum of squares, which
we seek to minimize by performing K-means clustering (12.17).

We strongly recommend always running K-means clustering with a large
value of n_init, such as 20 or 50, since otherwise an undesirable local
optimum may be obtained.

When performing K-means clustering, in addition to using multiple ini-
tial cluster assignments, it is also important to set a random seed using the
random_state argument to KMeans(). This way, the initial cluster assign-
ments in Step 1 can be replicated, and the K-means output will be fully
reproducible.

Hierarchical Clustering
The AgglomerativeClustering() class from the sklearn.clustering pack- Agglomerative

Clustering()age implements hierarchical clustering. As its name is long, we use the
short hand HClust for hierarchical clustering. Note that this will not change

544 12. Unsupervised Learning

the return type when using this method, so instances will still be of class
AgglomerativeClustering. In the following example we use the data from
the previous lab to plot the hierarchical clustering dendrogram using com-
plete, single, and average linkage clustering with Euclidean distance as the
dissimilarity measure. We begin by clustering observations using complete
linkage.

In [38]: HClust = AgglomerativeClustering
hc_comp = HClust(distance_threshold=0,

n_clusters=None,
linkage='complete')

hc_comp.fit(X)

This computes the entire dendrogram. We could just as easily perform
hierarchical clustering with average or single linkage instead:

In [39]: hc_avg = HClust(distance_threshold=0,
n_clusters=None,
linkage='average');

hc_avg.fit(X)
hc_sing = HClust(distance_threshold=0,

n_clusters=None,
linkage='single');

hc_sing.fit(X);

To use a precomputed distance matrix, we provide an additional argu-
ment metric="precomputed". In the code below, the first four lines computes
the 50× 50 pairwise-distance matrix.

In [40]: D = np.zeros((X.shape[0], X.shape[0]));
for i in range(X.shape[0]):

x_ = np.multiply.outer(np.ones(X.shape[0]), X[i])
D[i] = np.sqrt(np.sum((X - x_)**2, 1));

hc_sing_pre = HClust(distance_threshold=0,
n_clusters=None,
metric='precomputed',
linkage='single')

hc_sing_pre.fit(D)

We use dendrogram() from scipy.cluster.hierarchy to plot the dendro- dendrogram()gram. However, dendrogram() expects a so-called linkage-matrix representa-
tion of the clustering, which is not provided by AgglomerativeClustering(),
but can be computed. The function compute_linkage() in the ISLP.cluster compute_

linkage()
ISLP.cluster

package is provided for this purpose.
We can now plot the dendrograms. The numbers at the bottom of the

plot identify each observation. The dendrogram() function has a default
method to color different branches of the tree that suggests a pre-defined
cut of the tree at a particular depth. We prefer to overwrite this default by
setting this threshold to be infinite. Since we want this behavior for many
dendrograms, we store these values in a dictionary cargs and pass this as
keyword arguments using the notation **cargs.

In [41]: cargs = {'color_threshold':-np.inf,
'above_threshold_color':'black'}

linkage_comp = compute_linkage(hc_comp)
fig, ax = plt.subplots(1, 1, figsize=(8, 8))

12.5 Lab: Unsupervised Learning 545

dendrogram(linkage_comp,
ax=ax,
**cargs);

We may want to color branches of the tree above and below a cut-
threshold differently. This can be achieved by changing the color_threshold.
Let’s cut the tree at a height of 4, coloring links that merge above 4 in black.

In [42]: fig, ax = plt.subplots(1, 1, figsize=(8, 8))
dendrogram(linkage_comp,

ax=ax,
color_threshold=4,
above_threshold_color='black');

To determine the cluster labels for each observation associated with a
given cut of the dendrogram, we can use the cut_tree() function from cut_tree()
scipy.cluster.hierarchy:

In [43]: cut_tree(linkage_comp, n_clusters=4).T

Out[43]: array([[0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 1,
0, 0, 2, 0, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3,
3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3]])

This can also be achieved by providing an argument n_clusters to HClust();
however each cut would require recomputing the clustering. Similarly, trees
may be cut by distance threshold with an argument of distance_threshold
to HClust() or height to cut_tree().

In [44]: cut_tree(linkage_comp, height=5)

Out[44]: array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2,
2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2]])

To scale the variables before performing hierarchical clustering of the
observations, we use StandardScaler() as in our PCA example:

In [45]: scaler = StandardScaler()
X_scale = scaler.fit_transform(X)
hc_comp_scale = HClust(distance_threshold=0,

n_clusters=None,
linkage='complete').fit(X_scale)

linkage_comp_scale = compute_linkage(hc_comp_scale)
fig, ax = plt.subplots(1, 1, figsize=(8, 8))
dendrogram(linkage_comp_scale, ax=ax, **cargs)
ax.set_title("Hierarchical Clustering with Scaled Features");

Correlation-based distances between observations can be used for clus-
tering. The correlation between two observations measures the similarity
of their feature values.10 With n observations, the n×n correlation matrix

10Suppose each observation has p features, each a single numerical value. We measure
the similarity of two such observations by computing the correlation of these p pairs of
numbers.

546 12. Unsupervised Learning

can then be used as a similarity (or affinity) matrix, i.e. so that one minus
the correlation matrix is the dissimilarity matrix used for clustering.

Note that using correlation only makes sense for data with at least three
features since the absolute correlation between any two observations with
measurements on two features is always one. Hence, we will cluster a three-
dimensional data set.

In [46]: X = np.random.standard_normal((30, 3))
corD = 1 - np.corrcoef(X)
hc_cor = HClust(linkage='complete',

distance_threshold=0,
n_clusters=None,
metric='precomputed')

hc_cor.fit(corD)
linkage_cor = compute_linkage(hc_cor)
fig, ax = plt.subplots(1, 1, figsize=(8, 8))
dendrogram(linkage_cor, ax=ax, **cargs)
ax.set_title("Complete Linkage with Correlation-Based Dissimilarity

");

12.5.4 NCI60 Data Example
Unsupervised techniques are often used in the analysis of genomic data.
In particular, PCA and hierarchical clustering are popular tools. We illus-
trate these techniques on the NCI60 cancer cell line microarray data, which
consists of 6830 gene expression measurements on 64 cancer cell lines.

In [47]: NCI60 = load_data('NCI60')
nci_labs = NCI60['labels']
nci_data = NCI60['data']

Each cell line is labeled with a cancer type. We do not make use of the
cancer types in performing PCA and clustering, as these are unsupervised
techniques. But after performing PCA and clustering, we will check to
see the extent to which these cancer types agree with the results of these
unsupervised techniques.

The data has 64 rows and 6830 columns.
In [48]: nci_data.shape

Out[48]: (64, 6830)

We begin by examining the cancer types for the cell lines.
In [49]: nci_labs.value_counts()

Out[49]: label
NSCLC 9
RENAL 9
MELANOMA 8
BREAST 7
COLON 7
LEUKEMIA 6
OVARIAN 6

12.5 Lab: Unsupervised Learning 547

CNS 5
PROSTATE 2
K562A-repro 1
K562B-repro 1
MCF7A-repro 1
MCF7D-repro 1
UNKNOWN 1
dtype: int64

PCA on the NCI60 Data
We first perform PCA on the data after scaling the variables (genes) to have
standard deviation one, although here one could reasonably argue that it
is better not to scale the genes as they are measured in the same units.

In [50]: scaler = StandardScaler()
nci_scaled = scaler.fit_transform(nci_data)
nci_pca = PCA()
nci_scores = nci_pca.fit_transform(nci_scaled)

We now plot the first few principal component score vectors, in order to
visualize the data. The observations (cell lines) corresponding to a given
cancer type will be plotted in the same color, so that we can see to what
extent the observations within a cancer type are similar to each other.

In [51]: cancer_types = list(np.unique(nci_labs))
nci_groups = np.array([cancer_types.index(lab)

for lab in nci_labs.values])
fig, axes = plt.subplots(1, 2, figsize=(15,6))
ax = axes[0]
ax.scatter(nci_scores[:,0],

nci_scores[:,1],
c=nci_groups,
marker='o',
s=50)

ax.set_xlabel('PC1'); ax.set_ylabel('PC2')
ax = axes[1]
ax.scatter(nci_scores[:,0],

nci_scores[:,2],
c=nci_groups,
marker='o',
s=50)

ax.set_xlabel('PC1'); ax.set_ylabel('PC3');

The resulting plots are shown in Figure 12.17. On the whole, cell lines
corresponding to a single cancer type do tend to have similar values on the
first few principal component score vectors. This indicates that cell lines
from the same cancer type tend to have pretty similar gene expression
levels.

We can also plot the percent variance explained by the principal compo-
nents as well as the cumulative percent variance explained. This is similar
to the plots we made earlier for the USArrests data.

In [52]: fig, axes = plt.subplots(1, 2, figsize=(15,6))
ax = axes[0]
ticks = np.arange(nci_pca.n_components_)+1

548 12. Unsupervised Learning

−40 −20 0 20 40 60

−6
0

−4
0

−2
0

0
20

−40 −20 0 20 40 60

−4
0

−2
0

0
20

40

Z1Z1

Z
2

Z
3

FIGURE 12.17. Projections of the NCI60 cancer cell lines onto the first three
principal components (in other words, the scores for the first three principal com-
ponents). On the whole, observations belonging to a single cancer type tend to
lie near each other in this low-dimensional space. It would not have been possible
to visualize the data without using a dimension reduction method such as PCA,
since based on the full data set there are

(
6,830

2

)
possible scatterplots, none of

which would have been particularly informative.

ax.plot(ticks,
nci_pca.explained_variance_ratio_ ,
marker='o')

ax.set_xlabel('Principal Component');
ax.set_ylabel('PVE')
ax = axes[1]
ax.plot(ticks,

nci_pca.explained_variance_ratio_.cumsum(),
marker='o');

ax.set_xlabel('Principal Component')
ax.set_ylabel('Cumulative PVE');

The resulting plots are shown in Figure 12.18.
We see that together, the first seven principal components explain around

40% of the variance in the data. This is not a huge amount of the variance.
However, looking at the scree plot, we see that while each of the first seven
principal components explain a substantial amount of variance, there is a
marked decrease in the variance explained by further principal components.
That is, there is an elbow in the plot after approximately the seventh princi-
pal component. This suggests that there may be little benefit to examining
more than seven or so principal components (though even examining seven
principal components may be difficult).

Clustering the Observations of the NCI60 Data
We now perform hierarchical clustering of the cell lines in the NCI60 data
using complete, single, and average linkage. Once again, the goal is to find
out whether or not the observations cluster into distinct types of cancer.
Euclidean distance is used as the dissimilarity measure. We first write a
short function to produce the three dendrograms.

12.5 Lab: Unsupervised Learning 549

0 10 20 30 40 50 60

0
2

4
6

8
10

Principal Component

PV
E

0 10 20 30 40 50 60

20
40

60
80

10
0

Principal Component

C
um

ul
at

iv
e

PV
E

FIGURE 12.18. The PVE of the principal components of the NCI60 cancer cell
line microarray data set. Left: the PVE of each principal component is shown.
Right: the cumulative PVE of the principal components is shown. Together, all
principal components explain 100,% of the variance.

In [53]: def plot_nci(linkage, ax, cut=-np.inf):
cargs = {'above_threshold_color':'black',

'color_threshold':cut}
hc = HClust(n_clusters=None,

distance_threshold=0,
linkage=linkage.lower()).fit(nci_scaled)

linkage_ = compute_linkage(hc)
dendrogram(linkage_,

ax=ax,
labels=np.asarray(nci_labs),
leaf_font_size=10,
**cargs)

ax.set_title('%s Linkage' % linkage)
return hc

Let’s plot our results.
In [54]: fig, axes = plt.subplots(3, 1, figsize=(15,30))

ax = axes[0]; hc_comp = plot_nci('Complete', ax)
ax = axes[1]; hc_avg = plot_nci('Average', ax)
ax = axes[2]; hc_sing = plot_nci('Single', ax)

The results are shown in Figure 12.19. We see that the choice of linkage
certainly does affect the results obtained. Typically, single linkage will tend
to yield trailing clusters: very large clusters onto which individual observa-
tions attach one-by-one. On the other hand, complete and average linkage
tend to yield more balanced, attractive clusters. For this reason, complete
and average linkage are generally preferred to single linkage. Clearly cell
lines within a single cancer type do tend to cluster together, although the
clustering is not perfect. We will use complete linkage hierarchical cluster-
ing for the analysis that follows.

550 12. Unsupervised Learning

BR
EA

ST
BR

EA
ST C
N

S
C

N
S

R
EN

AL
BR

EA
ST

N
SC

LC
R

EN
AL

M
EL

AN
O

M
A

O
VA

R
IA

N
O

VA
R

IA
N

N
SC

LC
O

VA
R

IA
N

C
O

LO
N

C
O

LO
N

O
VA

R
IA

N
PR

O
ST

AT
E

N
SC

LC
N

SC
LC

N
SC

LC
PR

O
ST

AT
E

N
SC

LC
M

EL
AN

O
M

A
R

EN
AL

R
EN

AL
R

EN
AL

O
VA

R
IA

N
U

N
KN

O
W

N
O

VA
R

IA
N

N
SC

LC
C

N
S

C
N

S
C

N
S

N
SC

LC
R

EN
AL

R
EN

AL
R

EN
AL

R
EN

AL
N

SC
LC

M
EL

AN
O

M
A

M
EL

AN
O

M
A

M
EL

AN
O

M
A

M
EL

AN
O

M
A

M
EL

AN
O

M
A

M
EL

AN
O

M
A

BR
EA

ST
BR

EA
ST

C
O

LO
N

C
O

LO
N

C
O

LO
N

C
O

LO
N

C
O

LO
N

BR
EA

ST
M

C
F7

A−
re

pr
o

BR
EA

ST
M

C
F7

D
−r

ep
ro

LE
U

KE
M

IA
LE

U
KE

M
IA LE

U
KE

M
IA

LE
U

KE
M

IA
K5

62
B−

re
pr

o
K5

62
A−

re
pr

o LE
U

KE
M

IA
LE

U
KE

M
IA

40
80

12
0

16
0

Complete Linkage
LE

U
KE

M
IA

LE
U

KE
M

IA
LE

U
KE

M
IA LE

U
KE

M
IA

LE
U

KE
M

IA
LE

U
KE

M
IA

K5
62

B−
re

pr
o

K5
62

A−
re

pr
o

R
EN

AL
N

SC
LC

BR
EA

ST
N

SC
LC

BR
EA

ST
M

C
F7

A−
re

pr
o

BR
EA

ST
M

C
F7

D
−r

ep
ro

C
O

LO
N

C
O

LO
N

C
O

LO
N

R
EN

AL
M

EL
AN

O
M

A
M

EL
AN

O
M

A
BR

EA
ST

BR
EA

ST
M

EL
AN

O
M

A
M

EL
AN

O
M

A
M

EL
AN

O
M

A
M

EL
AN

O
M

A
M

EL
AN

O
M

A O
VA

R
IA

N
O

VA
R

IA
N

N
SC

LC
O

VA
R

IA
N

U
N

KN
O

W
N

O
VA

R
IA

N
N

SC
LC

M
EL

AN
O

M
A

C
N

S
C

N
S

C
N

S
R

EN
AL

R
EN

AL
R

EN
AL

R
EN

AL
R

EN
AL

R
EN

AL
R

EN
AL

PR
O

ST
AT

E
N

SC
LC

N
SC

LC
N

SC
LC

N
SC

LC
O

VA
R

IA
N

PR
O

ST
AT

E
N

SC
LC

C
O

LO
N

C
O

LO
N

O
VA

R
IA

N
C

O
LO

N
C

O
LO

N
C

N
S

C
N

S
BR

EA
ST

BR
EA

ST

40
60

80
10

0
12

0

Average Linkage

LE
U

KE
M

IA
R

EN
AL

BR
EA

ST
LE

U
KE

M
IA

LE
U

KE
M

IA
C

N
S

LE
U

KE
M

IA
LE

U
KE

M
IA

K5
62

B−
re

pr
o

K5
62

A−
re

pr
o

N
SC

LC
LE

U
KE

M
IA

O
VA

R
IA

N
N

SC
LC

C
N

S
BR

EA
ST

N
SC

LC
O

VA
R

IA
N

C
O

LO
N

BR
EA

ST
M

EL
AN

O
M

A
R

EN
AL

M
EL

AN
O

M
A

BR
EA

ST
BR

EA
ST

M
EL

AN
O

M
A

M
EL

AN
O

M
A

M
EL

AN
O

M
A

M
EL

AN
O

M
A

M
EL

AN
O

M
A

BR
EA

ST
O

VA
R

IA
N

C
O

LO
N

M
C

F7
A−

re
pr

o
BR

EA
ST

M
C

F7
D

−r
ep

ro
U

N
KN

O
W

N
O

VA
R

IA
N

N
SC

LC
N

SC
LC

PR
O

ST
AT

E
M

EL
AN

O
M

A
C

O
LO

N
O

VA
R

IA
N

N
SC

LC
R

EN
AL

C
O

LO
N

PR
O

ST
AT

E
C

O
LO

N
O

VA
R

IA
N

C
O

LO
N

C
O

LO
N

N
SC

LC
N

SC
LC

R
EN

AL
N

SC
LC

R
EN

AL
R

EN
AL

R
EN

AL
R

EN
AL

R
EN

AL C
N

S
C

N
S

C
N

S

40
60

80
10

0

Single Linkage

FIGURE 12.19. The NCI60 cancer cell line microarray data, clustered with
average, complete, and single linkage, and using Euclidean distance as the dissim-
ilarity measure. Complete and average linkage tend to yield evenly sized clusters
whereas single linkage tends to yield extended clusters to which single leaves are
fused one by one.

12.5 Lab: Unsupervised Learning 551

We can cut the dendrogram at the height that will yield a particular
number of clusters, say four:

In [55]: linkage_comp = compute_linkage(hc_comp)
comp_cut = cut_tree(linkage_comp, n_clusters=4).reshape(-1)
pd.crosstab(nci_labs['label'],

pd.Series(comp_cut.reshape(-1), name='Complete'))

There are some clear patterns. All the leukemia cell lines fall in one
cluster, while the breast cancer cell lines are spread out over three different
clusters.

We can plot a cut on the dendrogram that produces these four clusters:
In [56]: fig, ax = plt.subplots(figsize=(10,10))

plot_nci('Complete', ax, cut=140)
ax.axhline(140, c='r', linewidth=4);

The axhline() function draws a horizontal line line on top of any existing
set of axes. The argument 140 plots a horizontal line at height 140 on the
dendrogram; this is a height that results in four distinct clusters. It is easy
to verify that the resulting clusters are the same as the ones we obtained
in comp_cut.

We claimed earlier in Section 12.4.2 that K-means clustering and hier-
archical clustering with the dendrogram cut to obtain the same number
of clusters can yield very different results. How do these NCI60 hierarchical
clustering results compare to what we get if we perform K-means clustering
with K = 4?

In [57]: nci_kmeans = KMeans(n_clusters=4,
random_state=0,
n_init=20).fit(nci_scaled)

pd.crosstab(pd.Series(comp_cut, name='HClust'),
pd.Series(nci_kmeans.labels_, name='K-means'))

Out[57]: K-means 0 1 2 3
HClust

0 28 3 9 0
1 7 0 0 0
2 0 0 0 8
3 0 9 0 0

We see that the four clusters obtained using hierarchical clustering and
K-means clustering are somewhat different. First we note that the labels
in the two clusterings are arbitrary. That is, swapping the identifier of the
cluster does not change the clustering. We see here Cluster 3 in K-means
clustering is identical to cluster 2 in hierarchical clustering. However, the
other clusters differ: for instance, cluster 0 in K-means clustering contains
a portion of the observations assigned to cluster 0 by hierarchical cluster-
ing, as well as all of the observations assigned to cluster 1 by hierarchical
clustering.

Rather than performing hierarchical clustering on the entire data ma-
trix, we can also perform hierarchical clustering on the first few principal
component score vectors, regarding these first few components as a less
noisy version of the data.

552 12. Unsupervised Learning

In [58]: hc_pca = HClust(n_clusters=None,
distance_threshold=0,
linkage='complete'
).fit(nci_scores[:,:5])

linkage_pca = compute_linkage(hc_pca)
fig, ax = plt.subplots(figsize=(8,8))
dendrogram(linkage_pca,

labels=np.asarray(nci_labs),
leaf_font_size=10,
ax=ax,
**cargs)

ax.set_title("Hier. Clust. on First Five Score Vectors")
pca_labels = pd.Series(cut_tree(linkage_pca,

n_clusters=4).reshape(-1),
name='Complete-PCA')

pd.crosstab(nci_labs['label'], pca_labels)

12.6 Exercises
Conceptual

1. This problem involves the K-means clustering algorithm.

(a) Prove (12.18).
(b) On the basis of this identity, argue that the K-means clustering

algorithm (Algorithm 12.2) decreases the objective (12.17) at
each iteration.

2. Suppose that we have four observations, for which we compute a
dissimilarity matrix, given by





0.3 0.4 0.7
0.3 0.5 0.8
0.4 0.5 0.45
0.7 0.8 0.45



 .

For instance, the dissimilarity between the first and second obser-
vations is 0.3, and the dissimilarity between the second and fourth
observations is 0.8.

(a) On the basis of this dissimilarity matrix, sketch the dendrogram
that results from hierarchically clustering these four observa-
tions using complete linkage. Be sure to indicate on the plot the
height at which each fusion occurs, as well as the observations
corresponding to each leaf in the dendrogram.

(b) Repeat (a), this time using single linkage clustering.
(c) Suppose that we cut the dendrogram obtained in (a) such that

two clusters result. Which observations are in each cluster?
(d) Suppose that we cut the dendrogram obtained in (b) such that

two clusters result. Which observations are in each cluster?

12.6 Exercises 553

(e) It is mentioned in this chapter that at each fusion in the den-
drogram, the position of the two clusters being fused can be
swapped without changing the meaning of the dendrogram. Draw
a dendrogram that is equivalent to the dendrogram in (a), for
which two or more of the leaves are repositioned, but for which
the meaning of the dendrogram is the same.

3. In this problem, you will perform K-means clustering manually, with
K = 2, on a small example with n = 6 observations and p = 2
features. The observations are as follows.

Obs. X1 X2

1 1 4
2 1 3
3 0 4
4 5 1
5 6 2
6 4 0

(a) Plot the observations.
(b) Randomly assign a cluster label to each observation. You can use

the np.random.choice() function to do this. Report the cluster
labels for each observation.

(c) Compute the centroid for each cluster.
(d) Assign each observation to the centroid to which it is closest, in

terms of Euclidean distance. Report the cluster labels for each
observation.

(e) Repeat (c) and (d) until the answers obtained stop changing.
(f) In your plot from (a), color the observations according to the

cluster labels obtained.

4. Suppose that for a particular data set, we perform hierarchical clus-
tering using single linkage and using complete linkage. We obtain two
dendrograms.

(a) At a certain point on the single linkage dendrogram, the clus-
ters {1, 2, 3} and {4, 5} fuse. On the complete linkage dendro-
gram, the clusters {1, 2, 3} and {4, 5} also fuse at a certain point.
Which fusion will occur higher on the tree, or will they fuse at
the same height, or is there not enough information to tell?

(b) At a certain point on the single linkage dendrogram, the clusters
{5} and {6} fuse. On the complete linkage dendrogram, the clus-
ters {5} and {6} also fuse at a certain point. Which fusion will
occur higher on the tree, or will they fuse at the same height, or
is there not enough information to tell?

5. In words, describe the results that you would expect if you performed
K-means clustering of the eight shoppers in Figure 12.16, on the
basis of their sock and computer purchases, with K = 2. Give three
answers, one for each of the variable scalings displayed. Explain.

554 12. Unsupervised Learning

6. We saw in Section 12.2.2 that the principal component loading and
score vectors provide an approximation to a matrix, in the sense of
(12.5). Specifically, the principal component score and loading vectors
solve the optimization problem given in (12.6).
Now, suppose that the M principal component score vectors zim, m =
1, . . . ,M , are known. Using (12.6), explain that each of the first M
principal component loading vectors φjm, m = 1, . . . ,M , can be ob-
tained by performing p separate least squares linear regressions. In
each regression, the principal component score vectors are the pre-
dictors, and one of the features of the data matrix is the response.

Applied
7. In this chapter, we mentioned the use of correlation-based distance

and Euclidean distance as dissimilarity measures for hierarchical clus-
tering. It turns out that these two measures are almost equivalent: if
each observation has been centered to have mean zero and standard
deviation one, and if we let rij denote the correlation between the ith
and jth observations, then the quantity 1− rij is proportional to the
squared Euclidean distance between the ith and jth observations.
On the USArrests data, show that this proportionality holds.
Hint: The Euclidean distance can be calculated using the
pairwise_distances() function from the sklearn.metrics module, and pairwise_

distances()correlations can be calculated using the np.corrcoef() function.

8. In Section 12.2.3, a formula for calculating PVE was given in Equa-
tion 12.10. We also saw that the PVE can be obtained using the
explained_variance_ratio_ attribute of a fitted PCA() estimator.
On the USArrests data, calculate PVE in two ways:

(a) Using the explained_variance_ratio_ output of the fitted PCA()
estimator, as was done in Section 12.2.3.

(b) By applying Equation 12.10 directly. The loadings are stored
as the components_ attribute of the fitted PCA() estimator. Use
those loadings in Equation 12.10 to obtain the PVE.

These two approaches should give the same results.
Hint: You will only obtain the same results in (a) and (b) if the same
data is used in both cases. For instance, if in (a) you performed PCA()
using centered and scaled variables, then you must center and scale
the variables before applying Equation 12.10 in (b).

9. Consider the USArrests data. We will now perform hierarchical clus-
tering on the states.

(a) Using hierarchical clustering with complete linkage and
Euclidean distance, cluster the states.

(b) Cut the dendrogram at a height that results in three distinct
clusters. Which states belong to which clusters?

12.6 Exercises 555

(c) Hierarchically cluster the states using complete linkage and Eu-
clidean distance, after scaling the variables to have standard de-
viation one.

(d) What effect does scaling the variables have on the hierarchical
clustering obtained? In your opinion, should the variables be
scaled before the inter-observation dissimilarities are computed?
Provide a justification for your answer.

10. In this problem, you will generate simulated data, and then perform
PCA and K-means clustering on the data.

(a) Generate a simulated data set with 20 observations in each of
three classes (i.e. 60 observations total), and 50 variables.
Hint: There are a number of functions in Python that you can
use to generate data. One example is the normal() method of
the random() function in numpy; the uniform() method is another
option. Be sure to add a mean shift to the observations in each
class so that there are three distinct classes.

(b) Perform PCA on the 60 observations and plot the first two prin-
cipal component score vectors. Use a different color to indicate
the observations in each of the three classes. If the three classes
appear separated in this plot, then continue on to part (c). If
not, then return to part (a) and modify the simulation so that
there is greater separation between the three classes. Do not
continue to part (c) until the three classes show at least some
separation in the first two principal component score vectors.

(c) Perform K-means clustering of the observations with K = 3.
How well do the clusters that you obtained in K-means cluster-
ing compare to the true class labels?
Hint: You can use the pd.crosstab() function in Python to com-
pare the true class labels to the class labels obtained by cluster-
ing. Be careful how you interpret the results: K-means clustering
will arbitrarily number the clusters, so you cannot simply check
whether the true class labels and clustering labels are the same.

(d) Perform K-means clustering with K = 2. Describe your results.
(e) Now perform K-means clustering with K = 4, and describe your

results.
(f) Now perform K-means clustering with K = 3 on the first two

principal component score vectors, rather than on the raw data.
That is, perform K-means clustering on the 60 × 2 matrix of
which the first column is the first principal component score
vector, and the second column is the second principal component
score vector. Comment on the results.

(g) Using the StandardScaler() estimator, perform K-means clus-
tering with K = 3 on the data after scaling each variable to have
standard deviation one. How do these results compare to those
obtained in (b)? Explain.

556 12. Unsupervised Learning

11. Write a Python function to perform matrix completion as in Algo-
rithm 12.1, and as outlined in Section 12.5.2. In each iteration, the
function should keep track of the relative error, as well as the itera-
tion count. Iterations should continue until the relative error is small
enough or until some maximum number of iterations is reached (set a
default value for this maximum number). Furthermore, there should
be an option to print out the progress in each iteration.
Test your function on the Boston data. First, standardize the features
to have mean zero and standard deviation one using the
StandardScaler() function. Run an experiment where you randomly
leave out an increasing (and nested) number of observations from 5%
to 30%, in steps of 5%. Apply Algorithm 12.1 with M = 1, 2, . . . , 8.
Display the approximation error as a function of the fraction of ob-
servations that are missing, and the value of M , averaged over 10
repetitions of the experiment.

12. In Section 12.5.2, Algorithm 12.1 was implemented using the
svd() function from the np.linalg module. However, given the con-
nection between the svd() function and the PCA() estimator high-
lighted in the lab, we could have instead implemented the algorithm
using PCA().
Write a function to implement Algorithm 12.1 that makes use of PCA()
rather than svd().

13. On the book website, www.statlearning.com, there is a gene expres-
sion data set (Ch12Ex13.csv) that consists of 40 tissue samples with
measurements on 1,000 genes. The first 20 samples are from healthy
patients, while the second 20 are from a diseased group.

(a) Load in the data using pd.read_csv(). You will need to select
header = None.

(b) Apply hierarchical clustering to the samples using correlation-
based distance, and plot the dendrogram. Do the genes separate
the samples into the two groups? Do your results depend on the
type of linkage used?

(c) Your collaborator wants to know which genes differ the most
across the two groups. Suggest a way to answer this question,
and apply it here.

http://www.statlearning.com

