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 Asymptotically Efficient Rank Invariant Test Procedures

 By RICHARD PETO AND JULIAN PETO

 Radcliffe Infirmary, Institute of Psychiatry
 Oxford University University of London

 [Read before the ROYAL STATISTICAL SOCIETY on Wednesday, January 19th, 1972, the President
 Professor G. A. BARNARD in the Chair]

 SUMMARY

 Asymptotically efficient rank invariant test procedures for detecting
 differences between two groups of independent observations are derived.
 These are generalized to test between two groups of independent censored
 observations, to test between many groups of observations, and to test
 between groups after allowance for the effects of concomitant variables.

 One of these test procedures-the logrank-is particularly appropriate
 for comparing life tables, and can therefore be used in the analysis of clinical
 trials, industrial life-testing experiments and laboratory studies of animal
 carcinogenesis. It has greater local power than any other rank-invariant
 test procedure for detecting Lehmann-type differences between groups of
 independent observations subject to some right-censoring. The logrank test,
 although a rank test, can be presented in a format which exhibits the physical
 significance as well as the statistical significance of any important differences
 between groups of events.

 Keywords: LIFE TABLE; EXPERIMENTAL SURVIVAL CURVE; EXPERIMENTAL CDF; PRODUCT-
 LIMIT ESTIMATE; PERMUTATIONAL TEST; RANK TEST; TWO-GROUP TEST; RIGHT CENSORING;
 DEATH TIMES; LOGRANK; ASYMPTOTIC EFFICIENCY; RANK INVARIANCE; RELATIVE DEATH
 RATES; LEHMANN ALTERNATIVES; CLINICAL TRIALS; CENSORING; WILCOXON RANK SUM
 TEST; FAILURE TIMES.

 1. INTRODUCTION

 THE principal advantage of any rank test, the absolute reliability of the significance
 level it generates whatever the distribution functions of the observations, is for many
 such tests offset by some loss of power. Various rank tests which are asymptotically
 efficient for particular distributions have been suggested during the last few years, and
 Hajek and Sidak (1967) have described a general method for the construction of such
 tests. Since any rank test is invariant under monotonic transformation of the data,
 distributions fall into disjoint "efficiency classes" within each of which the efficiency
 of any rank test is constant; the normal and lognormal distributions are evidently
 members of the same class, for example.

 Suppose zi (1 < i N) are independent observations from the c.d.f. F(x, Oi), where
 6 = OA for 1 < i< n, i = 6B for n + I < i< N, and the null hypothesis is HO: OA = OB-
 If a score is assigned to each observation, the scores being such that the group A sum
 of scores is an asymptotically efficient test statistic, the null hypothesis distribution
 of this sum may be derived permutationally. If each score is not calculated exactly
 from the observation values but is estimated from their ranks, the resulting rank test
 will be asymptotically efficient in the family F(x, 6); it will of course also be asympto-
 tically efficient in any other family in the same efficiency class as F(x, 6).
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 186 RICHARD PETO AND JULIAN PETO - Rank Invariant Test Procedures [Part 2,

 2. SoME DEFINITIONS

 Let z be a real-valued random variable with c.d.f. F(x).

 (i) Let G(x) = 1 - F(x). G is the survival curve of z.
 (ii) We shall be concerned only with either exact or (interval) censored observa-

 tions. For the latter, the only information recorded about the random variable is that

 it lies somewhere in the non-null interval (xl, x2). One observation of a random
 variable may thus generate either one or two data points according to whether the
 observation is exact or censored. If x2 = oo then the observation is right-censored with
 censoring point or value xl. In data consisting entirely of either exact or right-censored
 observations, the only data points other than oo are the exact observation values and
 the censored observation values.

 (iii) Consider data consisting of observations of N random variables zi (1 < i < N).
 For these data, the experimental survival curve, H(x) is the survival curve under which
 the product of the likelihoods of the N observations is maximal. H has a dis-
 continuity at each exact observation value, since otherwise the likelihood of such
 observations would be infinitesimal. At each data point the values of H (or of the
 top and bottom of the step in H) are well definedt and these values are invariant
 under monotonic (rank-preserving) transformations of the data points. If there are
 no tied values and there is no censoring then the steps in H are all of equal size and at
 the rth exact observation value H decreases from (N+ 1- r)/N to (N- r)/N.

 For partially right-censored data H(x) is the familiar life-table estimate of the
 probability that a random variable will exceed x: let r(x) be the number of (exact or
 censored) observation values not less than x and let s(x) be the number of exact
 observations with the value x. s(x) is zero except on the set of exact observation
 values. Kaplan and Meier (1958) show that in this situation the experimental survival
 curve is constant except at the exact observation values, where

 H(x +) = H(x-) {1-s(x)/r(x)}.

 They also show that if the z* have a common survival curve G(x) then H(x) estimates
 G(x) unbiasedly; the effect of right censoring is to coarsen this estimate but not to
 bias it. Fig. 1 compares the experimental survival curve for some partially right-
 censored data with the experimental survival curve that would have been obtained had
 all the observations been exact. Ten random variables which actually took the values
 4, 8, 11, 15, 20, 26, 34, 45, 57 and 79 were observed subject to some right-censoring,
 the values 15, 26 and 45 being only known to lie somewhere in (10, cc) and the value 79
 being only observed to lie in (40, oo).

 (iv) Suppose G(x, 0) is a family of survival curves parametrized by 0, and that the
 positions of the discontinuities and constant regions of G(x, 0) with respect to x are
 independent of 0. If G(x, 00) (00 fixed) is a particular member of the family G(x, 0)
 then there exists a function ya (., 0) such that for all x, 0, G(x, 0) = y00{G(x, 00), 6}.
 For example, the family of exponential survival curves G(x, 0) = exp (- Ox) is
 generated from any particular member exp (- 00 x) by the operation of the function
 ya0(y, 0) = y0l0o. If there exists an explicit function T(0O, 0) and a differentiable
 function c(y, T) such that for all ye [0, 1] and for all parameter values 0, 00,
 c{y, T(00, 0)} = yoo(y, 0) then we call c the conversion function corresponding to the
 family G(x, 0) of distributions. (Note that c{y, TY(6, 0)}=y.) In the above exponential

 t In "Experimental survival curves for interval-censored data"-a paper by one of the authors,
 to appear in"Applied Statistics (1973), 22, No 1.
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 example, T(60, 0) = O/I8 and c(y, 'F) = y'r. The conversion functions corresponding
 to two different families of survival curves (the normal and lognormal, for instance)
 may be identical; a conversion function is more general than the family of survival
 curves that gave rise to it. In fact, families of distributions with the same conversion
 function lie in the same "efficiency class".

 ESC FROM ACTUAL (CENSORED) DATA
 ESC THAT WOULD HAVE BEEN OBTAINED
 HAD ALL THE OBSERVATIONS BEEN EXACT

 0.8

 0.6 .
 H(X)

 0.4.

 0.2.

 4 8 11IS520 26 34 45 57

 RANDOM VARIABLE VALUE, X
 FIG. 1. Experimental survival curve (ESC) for hypothetical data on ten random variables.

 3. A PERMUTATIoNAL TEsT OF H.-NOT RANK INVARIANT
 In the notation of the Introduction, suppose that N independent observations

 zi (1 < i < N) are subject to censoring. Their total log likelihood is ILi(O1) where
 Li(61) is the log likelihood function for the ith (possibly censored) observation.

 If i = 8 for all i then the total log likelihood is a function ,L1(6) of 0; let 0 be
 the (ML) value of 0 that maximizes this. Defining Ui = L,(8) (i.e. aLl/a6 at 0 6),
 Ui = 0 and it is shown in Appendix A that an asymptotically efficient test of
 HO: OA = OBversus HA: OAX 6B can be constructed from the statistic Y = EgroupA UI.
 If under HO the censoring applied to the observations is independent of group member-
 ship then under HO Y has the distribution of a sum of n chosen at random from
 U1,..., UN.

 This permutational test of HO is to be preferred to the generalized likelihood ratio
 test since even if, by mistake, the wrong family of distributions has been assumed the
 permutational test remains valid (although not necessarily asymptotically efficient),
 whereas the generalized likelihood ratio test does not. (Appendix A also shows how
 analogous scores Ui can be defined for hypothesis testing in the more general case
 where nuisance parameters exist with a common but unknown value for both groups.)

 Example 1. If each zi is an uncensored random variable from the exponential
 distribution with parameter 6i then L1(O1) = log 61-zzi i, 0 = 1/z and U1 = 2-zz.

 Example 2. A family G(x, 6) of survival curves of the form g0(x) is called a
 Lehmann-type family. If a mixture of exact and right-censored observations are made
 from a Lehmann-type family, then for an exact observation of t,

 L(O) = log 6+ 0logg(t) +terms independent of 0,
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 188 RICHARD PETO AND JULIAN PETO - Rank Invariant Test Procedures [Part 2,

 so U = L+= 1/logg(t), while for a right-censored observation with censoring
 point TL(O) = Glogg(T) so U = L() = logg(t). The test of 6A = 6B iS unaffected
 by scaling the scores, so we may equally well study the scores U= 1 +log G(t, 6) or
 log G(T, 0).

 4. A RANK INVARIANT TEST OF H0

 For a family G(x, 0) of survival curves such that under Ho each of the random
 variables zi is distributed according to the same member of the family, we can con-
 struct an asymptotically efficient rank invariant test of H0: OA = 6B' If censoring is
 present, it is assumed to have been applied at random in a similar way to both groups:
 this assumption is relaxed in Sections 10-12. The asymptotic efficiency of a test of
 H0 is the limit of the efficiencies achieved in a series of experiments of increasing size
 in which OA and OB converge to an intermediate value 00. Let the conversion function
 for the family G(x, 0) be c(y, T) as in paragraph 2, and let Go(x) denote G(x, 00). The
 family c{Go(x), T} of distributions is then the original family G(x, 6) but it is para-
 metrized in a different way, TF, a function of 00 and 0, now being the parameter of
 interest instead of 0. As before, the quantities Ui = aLi/aT at ' = T can be defined
 and an asymptotically efficient test procedure based on them.

 However, we may instead consider the family c{H(x), T} of survival curves
 generated from the experimental survival curve by the conversion function. As the
 sample size increases and OA and OB tend to 00, H(x) tends to Go(x) at all points where
 the censoring is not total, and since c{H(x), f} therefore tends to c{Go(x), T} test
 procedures which are asymptotically efficient in the family c{H(x), T} will also be
 asymptotically efficient in the parent family c{Go(x), T} or G(x, 0). For the family
 c{H(x), T} the U's are derived as follows. For a censored observation of z, from
 which Zi is known to lie in an interval over which H(x) drops from a to b or for an
 exact observation of zi where H drops from a to b at zi the likelihood function I is
 c(a, 'F) - c(b, T). Thus

 Us= alog(1)/aTl.=,
 c'(a, T) - c'(b, 'F)

 c(a, ') - c(b, ') T=j.

 By definition the experimental survival curve H(x) maximizes the total likelihood so
 that P is the value for which c(y, P) is the identity function c(y, ') y. Thus

 Ui = {f(a) -f(b)}/(a- b),
 where

 f(y) = ac(y, ')/ITjIT=*.
 Ui is therefore a function of a and b only. These are values of H(x) at certain of the
 data points and are therefore invariant under all rank-preserving transformations of
 the data.

 This is not a unique generalization of the U-test pr6cedure to rank invariance.
 One may, for example, replace {f(a) -f(b)}/(a- b) by f '{(a + b)/2} when the observa-
 tion concerned is exact. Asymptotically (a - b) -?0 for exact observations so this
 modified rank test would also be asymptotically efficient. If there are no censored
 observations the experimental survival curve decreases in equal steps from 1 to 0;
 Hajek and Sidak (1967) suggest in this case the score f'{l-r/(N+ 1)} for the observa-
 tion with rank r, which is also asymptotically efficient. These minor modifications
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 are unlikely to affect noticeably the power of the test in finite cases. The scores
 {f(a) -f(b)}/(a- b) sum identically to zero and have a definite conceptual source, but
 in particular cases (e.g. the logrank test) other scores may be simpler to compute or of
 marginally greater power in small samples.

 5. Two PARTICULAR TESTS: LOGRANK AND PROBIT

 5.1. The Logrank Test

 Experiments in which the observations are the time to the occurrence of an event
 are a common source of right-censored data. In this situation, we are generally
 interested in the incidence rate - a log G/@t at which the event is happening over time.
 The incidence rate suggested by G(t) will in general vary with time, and one obvious
 family to consider is the family of survival curves G6(t) (Lehmann-type alternatives)
 since the incidence rate suggested by G6(t) at t is 0 times that suggested by G(t) at t.
 We therefore consider the family H'(t), for which 'P = 1. The conversion function
 c(y, T) =yT that corresponds to this family of distributions corresponds to the
 exponential or Weibull families.

 Since c(y, T) = iT,

 f(Y) = ac(y, T)/ T'F l = ylog(y)
 and

 U = {f(a) -f(b)}/(a- b) = {a log (a) - b log (b)}/(a - b).

 U is approximately 1 + log {H(t)} for an exact observation t, and is exactly log {H(T)}
 for an observation right censored at T. These rank invariant scores are asymptotically
 efficient in any Lehmann family. They closely resemble the scores 1 + log G(t, #) and
 log G(T, 0) derived in Section 3, Example 2, which are efficient in a particular
 Lehmann family.

 For right-censored data, Altshuler (1970) has suggested for the logarithm of the

 survival curve the estimator - e(t) = - Ex<ts(x)/r(x), summation being taken over all
 exact observation values up to t and s(x) and r(x) being as in Section 2(iii). As the
 sample size increases both this and logH(t) will, if the distribution is continuous,
 converge to log Go(t). The rank invariant scores W = 1- e(t) or - e(T) will therefore
 also be asymptotically efficient in G6, and it can be proved that the test based on group
 sums of the W-scores is of maximal local power in GO among all rank invariant test
 procedures, even for small sample sizes, if G is continuous.t

 These W-scores sum identically to zero for both groups together, and we call the
 permutational test based on sums of them the logrank test. The small-sample efficiency
 of this test and the physical meaning of the logrank scores are studied in detail in
 Sections 7 and 10.

 5.2. The Probit Rank Test

 Consider the t-test situation. If F is the c.d.f. of the standardized normal dis-
 tribution then the family of conversion functions is c(y, T) = F{FF-(y) +'T}.
 (F-'(y) N(O, 1) if y is uniform over (0, 1) so this corresponds to the family of shifts
 of a normal mean.) 'P _ 0 and f(y) = ac(y, 'F)/aT I=0 = (2wr)-i exp --F - y2}.
 Scores based on the related U's give a rank test which is asymptotically efficient

 t This is proved in "Rank tests of maximum power against Lehmann-type alternatives"-a
 paper by one of the authors, to appear in Biometrika (1972), 59, No 2.
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 190 RICHARD PETO AND JULIAN PETO - Rank Invariant Test Procedures [Part 2,

 against changes in the parameter JL of the normal distribution N(Q, Ca2) or against
 changes in ju in any monotonic transformation (e.g. lognormal) of the normal
 distribution.

 6. WILCOXON's RANK SUM TEST

 Wilcoxon's two-sample rank sum test (Wilcoxon, 1945) for exact observations is
 the non-parametric test most commonly used in practice and so comparison of the
 rank sum test with any other suggested permutational test is clearly of interest.

 For uncensored data H(x) = '{H(x +) + H(x -)} is linearly related to the ranks of
 the observations, and the permutational test procedure assigning the score 21H(z)-I
 to an exact observation of z is equivalent to Wilcoxon's rank sum test.

 This scoring system may be generalized to censored data as follows. For censored
 data H(x) is still an ML estimator of the underlying survival curve and so an exact
 observation should still score 21H(z) - 1. If z is censored to lie in some interval over
 which H(.) drops from a to b then the appropriate score must lie somewhere between
 2a- 1 and 2b -1; in expectation, it is approximately halfway between them at a + b-1,
 and we suggest this score of a + b-I as appropriate for a censored observation. If we
 continue to give the score a + b - I to an exact observation of z where H drops from
 a to b at z then these generalized Wilcoxon scores sum identically to zero.

 This scoring system may alternatively be derived from the conversion function

 c(y, O) = {i +(y1 - i1}-1

 for the logistic family

 G(x, 0) = {I + exp (O + x)}-1

 of survival curves in which Wilcoxon's rank sum test is asymptotically efficient.

 1(OO, 0) = exp(0- 00),= ilf(y) = y2-y

 and

 U ={f(a)-f(b)}/(a-b) = a+b-1.

 This generalization of Wilcoxon's test to censored data is to be preferred to
 Gehan's (I965) generalization, since the relative values of the expectations of the
 scores Gehan assigns to exact observations at particular times vary according to the
 pattern of censoring imposed on the observations. If there is no censoring both tests
 assign a score which is in expectation proportional to 2G(z) - I for an exact observa-
 tion of z where G(y) is the true survival curve under Ho. If the data are right-censored
 the expectation of our generalized scores is still 2G(z) - I for an exact observation of z,
 but this is no longer true for Gehan's generalized scores. For example, if the censoring
 rate equals the incidence rate Gehan's scores for exact observations have expectation
 3G2(z) - 1, totally different from the Wilcoxon scores which they are supposed to
 generalize.

 7. POWER OF THE THREE RANK TESTS

 The decision whether or not to use a test depends not only on its power against the
 assumed alternatives but also on its power against other alternatives which might in
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 fact obtain. The asymptotic efficiencies of the above three rank statistics against
 normal and Lehmann alternatives are, in the absence of censoring:

 Normal Lehmann
 alternatives alternatives

 (%) (%)

 Logrank test 82 100
 Probit rank test 100 82
 Wilcoxon's rank sum test 95 75

 When the logrank test is being used between two groups of uncensored Lehmann
 observations we may compare its power to that of the (uniformly most powerful)
 likelihood ratio test, which is not rank invariant. The power of the likelihood ratio
 test may be obtained by noting that the ratio of exponential means has the distribution
 F x rJxr2, and the power of the logrank test may be obtained by summing the

 POWER CURVES FOR GLRT AND LOGRANK TESTS

 UNCENSORED EXPONENTIAL DISTRIBUTIONS: RATES rl ANDur2

 N=12 n=6 oC=O05

 0.9

 GLRtT /

 0/ LOGRANK TEST

 0

 0-4 -

 0.2 -

 0.0
 00 0.5 10 IS 20 2.5

 o ,I, (r, / r2)

 FIG. 2. Loss of power due to using a rank invariant test.

 separate probabilities of each of the "significant" rankings for various values of
 r1/r2. Fig. 2 shows this comparison for the special case of two groups each of six
 uncensored exponentially distributed observations. The comparison indicates that
 the use of the logrank test can be recommended even with such small samples.
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 The loss of power relative to the uniformly most powerful test is almost wholly due

 to the corruption of the data by ranking them; we have at rl/r2 = 1P01, 2, 4, 6, 8, 16
 and 32 calculated the power of the most powerful 5 %Y rank test and none of these
 particular most powerful rank tests has a power greater than 0-006 more than the

 power of the logrank test. At r1/r2 = 1901 (i.e. locally) the logrank test is, of course,
 the best possible 5 %Y rank test. This, incidentally, underlines the fact that no rank
 test is uniformly most powerful among all rank tests against Lehmann-type alternatives.

 8. CALCULATION OF PERMUTATIONAL SIGNIFICANCE LEVELS

 Let U1, ..., UN be a set of scores, and let the number of subjects in group A be n

 and in group B be N-n. Write X = EA Uj. There are NC" ways of choosing n out of
 the N scores and k of these will have a sum less than or equal to X. The one-sided
 significance level of X is thus P = k/NCn. We can find P in various ways:

 (1) Exactly by counting: this is feasible by computer for any n with N less than
 about 30 and for certain other special cases. A suitable algorithm is available (Hill
 and Peto, 1971).

 (2) Approximately, using the Pearson family of curves to estimate the c.d.f. of X
 as described in Appendix B. This method is very accurate: e.g. with the logrank
 scores on exact observations with N = 12, n = 3 the true and approximate c.d.f.'s
 never differ by as much as 0 01. (The normal approximation has been found to be
 inadequate.)

 (3) Approximately, by simulation. This technique is not often necessary since the
 regions of applicability of (1) and (2) overlap, although it may be preferred to (1) for
 speed and to (2) for conceptual simplicity.

 9. GENERALIZATION TO MULTI-GROUP EXPERIMENTS

 Suppose we have a set of N zero-sum scores W1, ..., WN. Divide them into r groups

 of sizes nl, ..., n, (, nj = N) and let Sj be the sum of the scores in the jth group. The
 null hypothesis we wish to test is that the allocation was at random.

 Under the null hypothesis E(Sj) = 0, and to test it we may calculate

 X2 = (E S2/nj)/S2

 where S2 = i Wi2/(N- 1). (X2 can be shown to be ST. var-'(S). S where S is the
 vector consisting of any r -1 of the r zero-sum quantities S1, ..., Sr.) Under the null
 hypothesis X2 _X21 approximately by the multivariate normal approximation to the
 joint distribution of the Sj's.

 We may use this result to test for differences between several groups of independent
 observations rather than just two groups as we have done up to this point, by cal-
 culating the scores U* as before and using the above X2 (with Ui replacing Wi) as a
 non-parametric test for variation between the groups.

 10. PRESENTATION OF THE LOGRANK SCORES FOR RIGHT-CENSORED DATA

 Consider a situation in which there are r groups of subjects. Let zi be the observa-
 tion, either exact or right-censored, on subject i; suppose that all the zi are independent
 random variables and that if zi is from Groupj then it is distributed with survival
 curve G09(x), where G is known and continuous. No assumption is made about the
 manner in which censoring is imposed on the data, so it may depend on group member-
 ship. The null hypothesis is Ho: Oj = 00 for all j (00 unknown).
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 Define di to be zero if zi is right-censored, otherwise 1; and let vi denote the value
 (see Section 2) of zi. Under Ho the ML estimator of 00 is = di/ - log G(vi).
 Writing

 ei 00 log G(vi),

 we find that under Ho E(e,) = E{- log GOo(vi)} = E(d) = var (di - e,) irrespective of the
 (possibly unknown) fixed censoring point of zi. If, therefore, for the observations in
 Group]j we write OJ=- di and E? = EiQ e,, then under Ho we find E(OJ -FE) = 0
 and var (0- E) = E(E1), so that Ej(Oj - Ej)2/E1 - x2 approximately. Replacing Ej in
 the above statistic by its ML estimator E1j = o Ei log G(v.), we have j O=_Ej tj
 so E>(Oj~Ej)2/A1 _ Xi approximately.

 In a clinical trial where the event recorded is death the observed number of deaths
 is Groupj is Oj and EA is an estimate of the expected number of deaths in Groupj
 given the values of the times at risk vi but not the values of the indicator variables di.
 The similarities between the properties of the quantities E; and the expected values for
 the numbers of deaths in the various groups calculated on an exposure-to-risk basis
 suggest that we define the "expected" number of deaths for Groupj to be E>. We
 should note, however, that in a groupj of subjects at risk for exceptionally long periods
 F. may exceed the number of subjects in the group.

 If e4 denotes the ML estimate -go log G(v*) of ei then the U-score for the ith
 subject is given by Ui = aLJi6 aIo-= = di- e, so the analyses of a set of data using the
 statistics ,iE Ui and (Oj - F1) to describe the jth group are equivalent. Although
 actual significance levels will, where possible, be calculated by permutation of the Us
 the format involving the Oj and EX is required to help understand the physical signifi-
 cance of the data. The ratios Oj/Ej are proportional to the #j and thus estimate the
 relative incidence rates in the different groups.

 When comparing various combinations of groups one with another the O's and
 E's sum directly when groups are combined, and, if certain groups are eliminated
 causing 2 007 E A in the remainder, direct scaling of the remaining 's making
 E 0 = E is all that is necessary effectively to recalculate all the quantities within
 this reduced class of subjects. The behaviour of the A1 thus closely follows the
 behaviour of classical expectations.

 An analogous presentation of the logrank scores is possible. The logrank score
 for a subject is defined as di - e(vi) (see Section 5), where - e(v,) is Altshuler's estimate
 of the logarithm of the common survival curve. If, analogous to our previous defini-
 tion of ei as - 60 log G(v), we define e = e(vj) and E1 = ij e- then the G and E1
 have approximately the same properties as the e4 and Ej above except that the deriva-
 tion of the ei does not require knowledge of G and is rank-invariant. The use of the
 descriptive statistics Oj and Ej as rank-invariant test statistics has already been
 described by Mantel (1966) from a conditional approach (see Section 12) to the
 differences between the r groups.

 Example. In an experiment (Roe et al., 1970) on cancer rates with many different
 carcinogenic regimes, each applied to a group of mice, the regimes varied widely in
 their lethality. Following the method of Pike and Roe (1963) the experimental
 survival curve for lymphoma incidence was calculated and the logrank scores Wi were
 derived. The sums Sj = EiWi were calculated for the various treatment groups,
 but it was not permissible to follow Section 9 and to take Ej S/nj S2 as X2- because the
 patterns of censoring imposed by the prior deaths of the mice on the observations of
 the lymphoma occurrence times were different due to the differing lethalities of the
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 different regimes. It was therefore necessary to calculate Oj and Ej = (Oj - S3) for
 each group and to take j(Oj -Ej)/Ej as Xr-I retaining rank invariance but avoiding
 the assumption of permutability.

 11. NUISANCE PARAMETERS AND CONCOMITANT VARIABLES

 If a family G(x, p, 0) of survival curves is parametrized not only by the parameter
 of interest but also by a vector p of nuisance parameters which by assumption have a
 common value in groups A and B, then the log likelihood is a function

 L(p, 0) = ELi(p, 0)
 of both p and 0. Defining Ui = aLil/a at p, 0, the values that jointly maximize L, it is
 shown in Appendix A that an asymptotically efficient (but not rank invariant) test
 of Ho: O = 6B iS obtained by studying group sums of the Ui. If concomitant observa-
 tions wi on each zi exist such that the survival curve for zi depends also on the values
 of the w% then Li depends on i not only through the observed value of Zi but also
 through wi; however, group sums of the scores Ui = aLi(, O)/Ia still constitute an
 asymptotically efficient test statistic, where p now includes any regression coefficients
 relating wi to Li. The null hypothesis distribution of the group sums can be found
 permutationally if under Ho any n of the N observations could equally well have
 constituted group A. This model would be appropriate, for example, if a normal
 mean value depended not only on group membership but also linearly on a vector w
 of concomitant variables, the coefficients in the linear dependence being the nuisance
 parameters p with the same values in each group. In this situation, if zi is observed
 exactly Ui oc (zi -6-w .p ). Generalization to rank invariance is possible if functions
 g(p, po), TF(6, 00) and c{y, g, T} exist such that for any parameter values

 G(x, p, 0) = c{G(x, po, 00), g(p, po), T(6, 0o)}*

 In this case the family c{H(x), g, T} can be studied and permutational rank invariant
 tests can be derived; however, unless H(x) asymptotically converges to a member
 G(x, po, 00) of the parent family these may not be asymptotically efficient. This con-
 vergence will in general only occur when there is no dependence on concomitant
 variables, but unless the dependence on concomitant variables is substantial the loss
 in asymptotic efficiency is second order.

 Special Case: Right-censored Observations from a Lehmann-type Distribution
 If, in a family Gt(x) of survival curves, ae depends not only on group membership

 but also on certain concomitant variable values, a good way to introduce the depen-
 dence on these is to assume that log a is linearly dependent on various functions of
 the concomitant variables as well as on 0.

 Model. If bi is a vector of functions of the concomitant variables wi then assume
 that the survival curve for Zi is GN(x), where log i = OA or 6B + biT. p. Recall the
 definition of di and vi from the previous section and let ei denote -log G(vi). Now
 the log likelihood function Li is di log ci - iN c, and the total log likelihood is, if
 OA = OB = So, a function L(60, p) which can be maximized explicitly with respect to
 00, giving a function L{6O(p), p} to be maximized with respect to p. It can be shown
 that if the values taken by those bi for which di = 1 are linearly independent then this
 function of p is everywhere convex with a unique maximum at I p I < oo and that there
 exists a negative upper bound to the second derivatives in any position and direction
 in p-space, so the location of po, 6 is computationally straightforward. Finally,
 Ui oc {di-exp (?+w T. ) Ae}.
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 Application to the logrank test. The generalization of this to rank invariance with
 respect to monotonic transformations of the observations of the zi is possible if the
 experimental survival curve H(x) for the total data is allowed to generate the family
 Ht(x) of distributions, where as before log ci = 0 +wT. p. For computational ease
 an approximation identical to the logrank approximation in Section 5 is made,
 namely that

 Li = di log ?e-?i - aj.Jj

 where J is, as before, Altshuler's estimator e(vi) of the log survival curve. The
 numerical value of p, if we let log ci = 0 +bT . p, is of considerable physical interest,
 as are the changes in the total log likelihood as selected members of p are constrained
 to be zero, and the test procedure based on permutational sums of the scores
 Ui oc {di - exp (6 + bT . p) ei} is rank invariant and is unaffected by dependence of the
 distributions on the concomitant parameters. For full asymptotic efficiency the more
 complex method of fit of this model due to Coxt is recommended, although the
 dependence of the distributions on the concomitant variables has to be substantial
 before the loss of asymptotic efficiency of this test procedure becomes important.
 This, or Cox's, fit of this model and the consequent changes in the total log likelihood
 enables the arguments of multiple regression to be applied to the rank invariant
 analysis of right-censored data, and this has proved of importance in clinical trials of
 cancer therapy. (See, for example, the report on the first M.R.C. (1972) myelomatosis
 trial.)

 12. RIGHT-CENSORING NOT INDEPENDENT OF GROUP MEMBERSHIP

 Suppose that two groups (A and B) of independent right-censored observations
 are being compared using rank invariant statistics based on the experimental survival
 curve in the manner of Section 4, but that the assumption of the permutability of the
 statistics does not obtain due to group-dependent differences in the censoring times.
 This would arise, for example, in clinical trials if withdrawals due to side-effects
 occurred mainly in one treatment group.

 The argument of Section 10 taking i (O- E)2/E as approximately x2 may still be
 used. However, the following conditional argument is to be preferred. Let exact
 observations occur at times T1 < T2 < ... < TW and let the number of exact observations
 taking the value Tk be mk out of a population of Mk with values greater than or equal
 to Tk, i.e. at risk at (Tk-). Let a proportion Pk of the Mk be from group A. Then,
 under the null hypothesis and conditional on the observed Pk, mk and Mk, the number
 rk of the mk exact observations that are from group A follows the hypergeometric
 distribution r(pk, Mk, Mk) (see Appendix C). Thus under these conditions Ek rk, the
 total number of exact observations from group A, is the sum of w independent hyper-
 geometric distributions.

 Now let U( be scores of the type {f(a) -f(b)}/(a - b) as suggested in Section 4,
 where a and b are experimental survival curve values andf(y) is some suitable function.
 Write g(y) =f(y)/y for O < y < I with g(O) = g(l) = 0, Hk = H(Tk +) and Ho = 1,
 and define Ak = {g(Hk_0 -g(Hk)} Mklmk. Then it can be shown that EA Ui = E Sk
 (rk -Pk mk). Thus our statistic EA Ui is, under the above conditional argument, a
 weighted sum of independent hypergeometric random variables, and its significance
 level may be calculated approximately using Pearson curves (see Appendices B
 and C).

 t Described in a paper to be published in J. R. Statist. Soc. B, (1972), 34, No 2.
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 In the special case of the logrank test, where the scores are not exactly of this form,

 = 1 and so Ai(ri- mi pi) = E (observed - conditionally expected).
 Since the way the censoring occurs is independent of the parameter of interest, it

 should not contribute haphazardly to the assessment of the final significance levels;
 these should be evaluated conditionally on the actual pattern of censoring we happen
 to find, and so even if the censoring is known to have been applied symmetrically and
 at random the conditional approach is apparently to be preferred. However, in
 practice there will be little difference between the significance levels obtained by the
 permutational and the conditional arguments when censoring is applied at random
 to two large groups, and the understanding afforded by the permutational approach
 to the statistical conclusions is sufficient justification for retaining permutation when-
 ever the censoring is random with respect to group membership.

 The conditional variance and the permutational variance attributed to the same

 quantity EA Ui can differ widely even when the two significance levels are very nearly
 the same. This underlies the importance of using the Pearson distributions rather
 than a normal distribution to calculate approximate significance levels.

 APPENDIX A

 Suppose we have a vector x of independent observations whose log likelihood
 function is parametrized by a vector 0 = 01,..., 0q of non-degenerate parameters, and
 that we wish to test Ho: 01 = 0 against HA: 01 , the null hypothesis being com-
 posite because the values of 02, ..., q are unknown. Rao (1965) has considered this
 problem. He defines the positions of the restricted and unrestricted likelihood
 maxima to be 0* and 0 (where 0* = 0) and defines V(o) to be the vector of first
 derivatives of the total log likelihood function L(0, x), noting that if x is distributed
 according to the parameter value 0 = 0t then V(01) has an asymptotically normal
 distribution with mean 0. Writing the variance/covariance matrix of V(01) as (61),
 he suggests the asymptotically efficient statistic V2(0*) z-(o*)ii, conjecturing that
 this will be of greater local power than either the Neyman-Pearson likelihood ratio
 test or Wald's asymptotically efficient test. The actual value of 0 in E(0) is not
 critical, since estimates of E-1 are asymptotically stable with respect to small variations
 in 0; Wald uses E(O), and when discussing this Rao justifies his own choice of E(O*)
 by remarking that it saves calculating 0 explicitly. The ideal value would presumably
 be 0t, but this is not known. However, this ideal statistic V2(0*). E1(0()ii is a mono-
 tonic function of the statistic aV1(0*), -and this latter quantity is therefore an asympto-
 tically efficient test statistic for testing Ho: 01 = 0 against HA: 01# 0.

 Suppose that x consists of N independent observations xl,..., xN, each para-
 metrized by a parameter 0 of interest and a vector p of nuisance parameters. (For the
 purposes of Section 3, there are no parameters other than 0 and p is a null vector.)
 Let 6, j denote the values of 0 and p that jointly maximize the total log likelihood
 function Li(xi, ,p) and define Ut = OLi/a0 at 8, j. Suppose that p is the same for
 all the observations, that 0 = OA for some (group A) and 0 = OB for the remainder
 (group B) and that we wish to test Ho: 0A = OB against HA: 0AA O B. Note that

 E Ui+ Us = 0.
 group A group B

 This problem can be reduced to the previous form by writing OA = 02 + O1D 6B = 02-01
 andpi = 02+i and testing Ho: 01 = 0 against HA: 01=A 0. In this case the asymptotically
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 efficient statistic 'V1(O*) equals

 group A group B group A

 APPENDIX B

 Approximations using Pearson Curves

 Let X be the sum of a random sample of size n > 0 chosen without replacement

 from the N> n zero-sum scores U1, ..., UN. There are up to NC. possible values for X,
 each combination having equal probability.

 Writing mi = _;Y 1 UiIN, i for the ith moment of X and r for n(N- n)/(N- 1), it
 can be shown that

 E(X) = , = n* ml = 0,

 V(X) = =L2=r M2
 L3 = r(N- 2n) m3/(N- 2)

 and

 (L4=r[m4 + 3(n -1) (N-I-n) (N. m2 -2m4)/{(N- 2) (N- 3)}].

 Define 1 = [2/L3 andf2 = PU4/IL2
 The distribution of XIV1I2 may now be approximated by the Pearson distribution

 with the same first four moments. This distribution has been tabulated by Johnson
 et al. (1963). Alternatively the significance level of X may be computed as follows.

 To avoid trivial complications, assume N> 7 and that there are more than two

 possible values for X. Write C = 6(/2-91-1)>0 and D = -3p+6-232. We will
 only describe the computational procedures for the case D > 0 since D > 0 for all but
 possibly a few very large or small values of n. (For a particular set of scores write
 w = 3m3+6m2-2m4 m2, then D > 0 if n lies in the interval r < n < N-r, where r = 0 if
 w > 0 and 1 < r < N/4 otherwise.)

 With D>0, write R = C/D, 4 = /l(R+2)2/{(16(R+ 1)}, 0 = sgn(IL3) 4)/(1 + )),
 p = R(1 - 0)/2, q = R(1 + 0)/2, a = {4142(1 + 0(1 +R)}-i and b = p/R. Thenp > 0, q > 0
 and aX+b has the same first four moments as the Pearson type I or II (beta) dis-
 tribution with p.d.f.

 f(w) = wP-'(1 - w)q-1/B(p, q).

 The one-sided significance level of a particular value X is then estimated by computing

 (Ludwig, 1963)
 raX+b

 f:J f(w) dw + 0.5/NCn,

 the last term being a continuity correction, applicable in the absence of widespread

 tied values when most steps in the c.d.f. of X are of size 1INCn. If, as in Wilcoxon's
 rank sum test, the Ui are mostly small coprime integers then a more appropriate
 continuity correction is to replace X in this integral by X+ 0 5.

 APPENDIX C

 Weighted Sum of Hypergeometric Random Variables

 Let r(p, m, M) be a hypergeometric random variable with real parameter
 p (O0 p < 1) and integer parameters m and M (O0 m < M, Mp integral); r takes the
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 value j (for j] Mp and m -j j M- Mp) with probability

 (J )m m--J)l(m
 where q = I-p. E(r) = mp and writing ck for the kth central moment of r we have

 C2= mpq(M-m) (or zero if M< 2),
 m-l1

 C = C2(q-p) (M- 2m) (or zero if M< 3) and
 - M-2

 =c2[M(M+ 1)- 6m(M- m) + 3pq{M2(m -2)-Mm2 + 6m(M-m)}]
 (M-2) (M-3)

 (or c2(1 - 3pq) if M< 4).

 Now let rj (1 , i < w) be independent hypergeometric random variables with
 parameters pi, mi and Mi and central moments cij (j = 2, 3, 4), and let Ai (1 < i s w) be
 a set of w constants. Then Y = E Ai(ri - mi pi) has mean zero and central moments

 /L2= A 92, = E AiC Ci3
 and

 4 = 3pA + E A4(c4-3c2).
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 DISCUSSION ON THE PAPER BY R. AND J. PETO

 Professor R. N. CURNOW (University of Reading): Mr President, ladies and gentlemen.
 I congratulate the two authors on the stimulating and useful paper that they have presented
 to us this evening. There are occasions when any distributional assumptions about data
 can be dangerous. This applies particularly to data on survival, whether it be of living
 organisms or of physical material. The authors have presented a method of analysis that
 will be very useful in these situations.

 I found the authors' written presentation rather too formal for my taste and I wonder
 if this may result in the paper not being understood and the methods used as much as
 they should. I would have preferred a more intuitive presentation followed by a tidying-up
 operation relating the method to other methods and discussing questions of asymptotic
 efficiency and local power. Certainly the paper puts the methods in the perspective of
 general theory and this is very useful.

 On points of detail, why do the authors suggest in Section 5.1 the approximate
 U score 1 +log [H(t)] for an exact observation when an exact U score could be used?
 Where does the advantage lie in finite samples? In the same Section, are there any reasons
 to prefer Altshuler's estimate of the survival curve to Kaplan and Meier's? The expecta-
 tions and variances of ei, di and di - ei given in Section 10, paragraph 2, follow from general
 theorems on maximum-likelihood estimation but are given somewhat abruptly. I must
 comment adversely on the so-called example (Section 10, last paragraph). The example
 is not an example at all. Where are the data? Where are the inferences to be drawn from
 applying the method to the data? The examples presented orally this evening should have
 been included in the written paper.

 The authors suggest that, with survival data, the observed and expected numbers of
 deaths for the different groups provide a useful presentation of the scores. This is true,
 but the whole shape of the experimental survival curve for the different groups may be of
 interest, not just the number of deaths to a particular date. We have used the methods
 of this paper in analysing some data on different treatment regimes for geriatric patients.
 The survival time distributions for geriatric patients are very far from standard and the
 methods of this paper have proved very useful in analysing the data. There were about
 600 patients in our geriatric trial and this meant that we could present to the consultants
 meaningful experimental survival curves for the different groups of patients. The curves
 are, of course, unbiased estimates of the underlying real survival curve and the test
 statistic provides a test of the differences between a particular feature of these survival
 curves. I leave it to others to comment on the fact that the experimental survival curve
 above the point of longest survival to date is always zero. With our large numbers of
 patients we have so far found it easier to apply the methods of this paper to interesting
 sub-groups of patients rather than use the procedure suggested for concomitant variables.

 With the logrank test, the scores are linearly related to the survival time of the uncensored
 individual and the expected survival time of the censored individual if we assume the
 survival curve for the different groups is the same exponential and H(t) is exact, i.e.
 H(t) - e-At. Does this generalize and do the authors attach any importance to this
 result? Have the authors considered the possibility of using the experimental survival
 curve to calculate the expected survival time for censored individuals and using this
 instead of the logrank scores they suggest?

 I hope that the authors or others interested in these methods will carry out more
 detailed studies of the finite sample properties of these tests. I hope also that some
 attempt will be made to look at the use of the test statistic in sequential situations. In
 clinical trials it is clearly imperative that the trial is stopped as soon as possible. Have the
 authors any ideas on how the method might be used in a sequential manner?

 This evening we may be hearing the parametric versus non-parametric arguments.
 I think that the main question we should consider is at the design or planning stage
 rather than at analysis. How should we advise experimenters? Assume that we are,
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 a priori, unable to make sufficient distributional assumptions to specify parameters for
 estimation. I suggest that we should more strongly advocate the collection of sufficient
 data to allow some estimate of distributional form followed by estimation of its parameters.
 This may mean fewer experiments, but they would be larger and therefore more informative
 ones. One decisive experiment is worth many indecisive ones. In a sequence of experiments,
 the strength of the argument may depend on the weakest experiment in the sequence.
 They may all need to be strong. I am really returning to my earlier point about the need
 to estimate whole distributions. I think that we have oversold the amount that we learn
 from significance tests that compare some particular feature of unspecified distributions.
 This evening's paper has removed some of the arbitrariness about the feature chosen
 for comparison but does this go far enough?

 I have much pleasure in proposing a vote of thanks to Richard and Julian Peto for
 their paper.

 Mr W. BRASS (London School of Hygiene & Tropical Medicine): Since this is an
 Ordinary Meeting of the Society with particular sponsorship from the Medical Section I
 make no apology for dealing with the practical issues of applied statistics. It also simplifies
 my task by letting me avoid questions outside my competence. My main difficulty was in
 being sure what the paper was really about-not the details although these are heavy
 enough but what advances in knowledge and techniques were being claimed. The authors
 have been rather too modest in not providing a section which spelled out how useful their
 work was-and exactly for what. In fact, the necessary drum-beating has been done by
 them in their oral introduction. I only wish I had heard it before I tried to read the paper.

 As I see it they have developed one logical and convenient approach for examining
 certain important properties of tests based on rank scores in applications to data on
 survivorship. Their procedure is a good starting point for the construction of useful tests
 for particular applications. One of the most valuable practical consequences is the neatness
 with which censored observations are incorporated into the method, whether the censoring
 is random with respect to the groups being compared or not. In applications of the kind
 considered censoring is a common nuisance and allowing for it can be a serious
 complication.

 The most interesting feature of the development to me is the elimination of the relation
 between the survivorship curves and the original time variable as a relevant feature and the
 concentration instead on the relative behaviour of the curves themselves. There are many
 analyses of vital statistics where the variation in rates with time is complex but the patterns
 are similar for different sub-populations, leading to a simple internal relationship, at least
 to a reasonable approximation. The methods proposed are particularly useful in this
 situation.

 For some years I have been using a model life-table system, extending to mortality at
 all ages, for which the family of conversion functions, in the terms of this paper, is linear
 on a logit scale. In general, this is a two-parameter system but if we retain the one
 measuring a shift in the mean of the hyperbolic sec2 frequency distribution but fix the
 corresponding variance we have a set very close to the probit family of Section 5.2. In the

 notation there c(y, 2/) = y/{y+ ( -y) exp 0/} where y = 1/(1 + exp x), , = - 00. A logit
 rank test can then be obtained by the procedure given and it turns out to be the same as the
 Wilcoxon test as generalized by the authors in Section 6. Because of the close similarities
 between the logit and probit functions it is not surprising that the power of the Wilcoxon
 test is very close to that of the probit rank analogue in the asymptotic examples of Section 7.
 We might guess that in practice, with finite samples-and particularly with censoring-the
 tests would behave virtually identically.

 The logrank test is efficient when the forces of mortality in the two-sub-populations
 compared are in a constant ratio over time; the Wilcoxon test does best when the ratio
 tends to one in a particular way as time increases. My own prejudice is that the latter
 pattern for, the relationship is generally the more likely.
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 The main justification of tests based on ranks must be their robustness to deviations
 from the assumptions. I think it is fair, therefore, to suggest that the authors' might have
 given this more consideration-anyway it is the standard tactic for a discussant who has
 run out of ideas to ask for more. Specifically they might have spent some effort on
 examining the power of the tests for censored data because of its practical importance.
 The effect of deviations from the assumptions about the relations between forces of
 mortality in the groups is also worth looking at. Both the logit and probit families can be
 shifted towards the Lehmann by altering the parameter corresponding to the standard
 deviation of the frequency distribution. It would be useful to know how the tests behave
 in such circumstances.

 I have pleasure in seconding the vote of thanks.

 The vote of thanks was passed by acclamation.

 Dr M. C. PIKE (DHSS Cancer Epidemiology and Clinical Trials Unit, Regius Depart-
 ment of Medicine, Oxford University): One very attractive feature of the method of
 analysis based on the W scores of Section 5.1 is its simplicity. The W scores can be calcu-
 lated very easily for each patient and then, dividing the range of any explanatory variable
 into three or four groups, the analysis can be completed, very nearly optimally, on a desk
 calculator using the well-known epidemiological technique of indirect standardization.
 Linear trend terms can be incorporated into this scheme at the cost of some little extra
 effort (Armitage, 1966; Mantel, 1963).

 This method of approach has the advantage, to my way of thinking anyhow, of almost
 forcing one to be very aware of interactions. These may be the most important things to
 look for. Consider the attached table showing the results of the Medical Research Council's
 Concord Trial in acute lymphoblastic leukaemia of childhood (Medical Research Council,
 1971). The treatments were chemotherapy with the drug methotrexate (the "best"
 treatment known at the start of the trial), repeated vaccinations with B.C.G., and no further
 specific therapy. The last line of the table shows that the best treatment group was that on
 methotrexate, and the right-hand marginal totals show that a high initial leucocyte count
 is associated with shorter remissions. The relapse rates of the methotrexate group in
 relation to the combined B.C.G. plus no treatment groups are, however, as follows:

 Initial leucocyte count Others: Methotrexate

 0- 15-5: 1
 6,000- 3-3: 1
 21,000+ 1 1 : 1

 Clearly methotrexate does not work for poor prognosis patients. This means that in future
 trials this group of patients should be treated very much as a separate group. Treatment
 protocols for them will bear little relation to protocols for patients with low initial leucocyte
 counts.

 Thirty years ago physicians were on the whole against randomized clinical trials,
 arguing that each patient was different and that this effectively precluded making advances
 by this method. Bradford Hill and others campaigned against this, and the rapid progress
 in the treatment of tuberculosis, brought about to a significant extent by clinical trials, is a
 measure of their success (Hill, 1962). Reports of these trials devote considerable attention
 to showing that the random allocation to treatment groups had "worked" in the sense
 that these groups had a similar distribution of "good" and "poor" prognosis patients.
 I think with today's paper we can now say we have definitely passed this stage and say to
 the physician that we have met him half-way. We now have the technique which allows us,
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 maybe not to regard each patient as different, but to break the patients into sub-groups
 whose treatments in trials may well be different.

 Finally, I think it should be emphasized that the logrank test statistic is also generated
 by considering the data as a sequence of 2 by 2 tables (Mantel, 1966) and in this version has
 been used for a long time in clinical trials by a number of groups in the United States.

 Professor D. R. Cox (Imperial College): It is a pleasure to congratulate the authors
 warmly on a most original and interesting paper. I have a number of comments and
 questions on detail.

 Censoring operating unequally on the different groups is discussed briefly in Section 12;
 the exact permutation tests then do not hold. How important in practice is unequal
 censoring? How far out are the permutation significance levels likely to be?

 In the two-sample problem with survivor functions F(x), {F(x)}0 how are confidence
 limits for 0 best calculated when 0 is appreciably different from one?

 Are fairly simple procedures available when a matched pair design is used?
 In my own unpublished work on regression problems connected with life tables the

 hazard function (age-specific death rate) for an individual of age x and with regressor
 variables zl, ..., zp, is assumed to be

 exp (f1 z1 + ... + P, zP,) Ao(x),

 where AO(x) is the unknown hazard function in the "standard" condition z-... = z2, = 0
 and the P's are regression coefficients. Conditional inference can be used if interest is
 concentrated on the P's. If the z's are independent of age this is the generalized Lehmann
 model used by the authors, but in fact the conditional arguments hold also when the z's
 are functions of age and, at least in theory, this gives some extra flexibility. Can the
 authors' methods be similarly extended?

 Professor J. DURBIN (London School of Economics): I wish to add my congratulations
 to those of the other speakers on what seems to me to be a very solid achievement by the
 authors. However, I regret that they did not discuss the close relation between the
 experimental survival curve and the sample distribution function (d.f.). Indeed, if there are
 no tied values and no censoring the two are equivalent. There is an enormous literature on
 tests based on the sample d.f. and it would be interesting to see how much light this throws
 on the problems under consideration.

 My own feeling is that one would normally expect to gain greater insight into the effects
 of treatment differences from a visual comparison of the experimental survival curves than
 by carrying out a formal test of significance, even an efficient one. From this point of view
 the function of the significance test is a subsidiary one, i.e. the provision of a yardstick
 against which the observed differences between two curves can be assessed; one therefore
 looks for a statistic which one can relate in a fairly direct way to the difference between two
 curves, e.g. the Kolmogorov-Smirnov statistic.

 The comparison with the sample d.f. would also have benefit in the other direction, e.g.
 in the study of tests on the sample d.f. in the presence of censoring and of tied or grouped
 data. The authors' work on tests in which ranks are replaced by efficient scores also
 suggest the possibility of using a modified form of sample d.f. which has jumps with sizes
 determined by efficient scores instead of taking all jumps equal to 1/n.

 Mr I. D. HILL (Medical Research Council): In Dr Pike's contribution to the discussion,
 he stressed that one of the beauties of the Peto method is that it is so easy to use; but
 nobody would guess that that was so from looking at the present paper, which of course
 was not intended as a users' guide.

 A "cook-book" users' guide is needed, however, if the method is to achieve any
 widespr.ead use. May I enquire whether anyone has any plans to produce one?
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 The following contributions were received in writing, after the meeting:

 Professor A. STUART (London School of Economics): The efficiency of the permutational
 test in Section 3 is essentially implied by the following results, where reference is made, for
 the sake of convenience, to Volume 2, 2nd edition, of Kendall and Stuart:

 1. The fact mentioned just below (22.36) on p. 173, that the one-sided test mentioned
 there is efficient.

 2. The fact that maximum-likelihood estimators converge strongly to the true
 parameter values, so that the result mentioned above would also hold asymp-
 totically if they were substituted.

 Apart from the efficiency point, it seems to me that the null distribution is that of a sum
 chosen from a finite population on essentially the same grounds as are familiar for the
 Wilcoxon two-sample test (Exercise 31.15, p. 571) or for Pitman's more general test
 (Section 31.46, p. 489).

 Professor EDMUND A. GEHAN (University of Texas at Houston): This paper is a
 welcome addition to the literature of non-parametric tests appropriate for comparing
 survival distributions. It certainly is a common situation, at least in clinical trials for
 comparing survival distributions, that it would be desirable to test whether the hazard
 rate in one group is a constant multiple of that in the other. The logrank test seems
 eminently suitable for this type of problem. Before applying this test in all such circum-
 stances, however, it would be useful to have some further information concerning its
 characteristics. What is the power of the test when some censored data are present in
 both groups? It is possible, though perhaps not likely, that censored data would have a
 more severe effect on the asymptotic efficiency of the logrank test than, say, a version of
 Wilcoxon's rank sum test so that the latter may become preferable if certain types of
 censoring are present. Also, it would be of interest to know whether Altshuler's estimate,
 log {H(t)} = - - s(x)/r(x) is really any better than log H(t), where H(t) is Kaplan and
 Meier's estimate of the survivorship function.

 It should be pointed out (if it has not already been so) that the logrank statistic is the
 same as the statistic U(O) which Cox (1972) proposes for the two-sample problem with
 censored data.

 The authors consider the normal approximation to the calculation of permutational
 significance levels to be "inadequate". Since such an approximation is part of established
 practice, has surely been applied significantly more often than exact counting or other
 methods and could be applied here, it would be of great interest to have a more precise
 statement of how poor the approximation is.

 When discussing generalizations of Wilcoxon's rank sum test to censored data, the
 Petos suggest a scoring system and state "...[it] is to be preferred to Gehan's (1965)
 generalization, since the relative values of the expectations of the scores Gehan assigns to
 exact observations at particular times vary according to the pattern of censoring imposed
 on the observations". Of course, the only really convincing basis for preferring one test to
 another in a given circumstance is from consideration of the power against alternative
 hypotheses (and, in this case, when censored data are present). The authors do not supply
 any information on this point. It might also be mentioned that it can be quite sensible to
 have a scoring system that is dependent to some degree on the observed censoring pattern.
 Suppose, for example, in a clinical trial comparing two treatments, A and B, that there is
 on the average equal exposure to the risk of failure in the two groups, but many more
 censored observations are observed in the A group. This is an indication of the effectiveness
 of treatment A in delaying or preventing failure and having a scoring system which is to
 some extent dependent on the pattern of censoring may well be preferred.

 Finally, the authors have proposed a number of tests of high asymptotic efficiency
 appropriate for testing Lehmann alternatives, shifts of a normal mean and have described
 a method for generating tests in other circumstances. Suppose that before an experiment
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 is conducted, a research worker has no good ideas of what types of alternatives to test
 for (though such an idea may be developed after the data have been collected), what test
 should be recommended? Might it not be a Wilcoxon type test because of its simplicity
 and relatively high asymptotic efficiency, even though it is not asymptotically most
 efficient for any family of distributions?

 The authors replied in writing, as follows: Every analysis of survival data should either
 be efficient against Lehmann alternatives or have a very clear reason for not being so: the
 Lehmann family is the "normal" distribution of survival theory. In a Lehmann family,
 the display of "observed" and "expected" event-counts in various subgroups (Mantel,
 1966), regression on explanatory variables (Cox, 1972) and logrank-type permutational
 significance tests (our paper) form as unified a whole as do normal-distribution regression
 coefficients, degrees of freedom and sums of squares. Some of the contributors to this
 discussion have suggested various ways in which our logrank test might be modified, but
 in fact any modification of the logrank test destroys this unified structure and wastes
 statistical power; the permutational logrank test defined in Section 5.1 is not merely
 asymptotically efficient against Lehmann alternatives, it is actually of greater local power
 than any other rank test. This is exactly true for any particular finite sample size and for
 any particular way the censoring happens to occur, and is the best property possible for a
 rank test that compares groups of similarly censored (or uncensored) event times. We are
 emphasizing the maximal local power of the logrank test at some length because several
 discussants have not noticed it, and have suggested that various modifications might
 improve the efficiency when censoring occurs or the sample size is small. We repeat, no
 matter what the censoring pattern or the sample size may be, no modification can increase
 the local power of the permutational logrank test against Lehmann alternatives without
 sacrificing rank invariance.

 The loss of efficiency following local deviations from the assumed relationship between
 the survival curves of the different groups is difficult to discuss, since no general parametric
 description of such variations is possible. However, since the loss of asymptotic efficiency
 when the logrank test is used in the t-test situation is only 18 per cent, we may guess that the
 effect of less gross deviations is marginal. Professor Cox's question on the effect of
 erroneously assuming that the censoring patterns in different groups are the same is, for
 the same reason, difficult to answer generally; the method of Section 12 should be used
 whenever the symmetry of censoring is in any doubt.

 Professor Cox rightly implies that we cannot deal with time-dependent concomitant
 variables, and that his regression method leads to better parameter estimates and confidence
 limits. However, our two-group test procedures are better, and the advantages of his
 regression model and our permutational test can be combined by basing the corrected
 U-scores of Section 11 on his model, as indicated in the discussion following his paper.

 The other question that many people have raised is this: the Wilcoxon generalization
 and the logrank are equally easy tests to perform. Under what circumstances is the
 Wilcoxon generalization better? Our answer is that if your data are times, then the
 logrank is probably better, whereas otherwise the Wilcoxon is probably preferable,
 especially if the distributions have little skewness.

 We would like to thank all the contributors to this discussion, especially those who warn
 that mere significance testing is not good statistics: look for interactions, plot several
 experimental survival curves, fit various regression models and perhaps derive some
 confidence intervals. We agree entirely with these suggestions: the more data are looked
 at, the better they will be understood. In this context, we feel that sequential methods may
 be misleading if a study is stopped before the pattern of mortality is fully evident. For
 instance, sequential analysis of a trial in alcoholics of total withdrawal compared with
 continued drinking might, due to deaths during withdrawal, prove that continued drinking
 was far safer than abstinence.

 We would especially like to answer David Hill, who wants to know where a "cook-
 book" users' guide to the logrank test can be found. The chapter entitled "Leukaemia
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 Trials" in the forthcoming edition of Medical Surveys and Clinical Trials (Oxford
 University Press) contains a description for non-statisticians of the logrank methods, and
 "Three algorithms for doing permutational tests", to appear in Applied Statistics,
 implements the calculation of Kaplan and Meier's "life-table" experimental survival
 curve, Altshuler's log survival curve estimator, the logrank scores and the Pearson
 approximation to the distribution of a sum chosen at random from a finite population.
 Two papers which make extensive practical use of logrank methods are referred to in our
 text: the Medical Research Council's report on the first myelomatosis trial (Part 1) is on a
 clinical trial with many interesting explanatory variables, and the 1970 paper by
 F. J. C. Roe et al. is on a multi-group mouse painting experiment, where time to
 carcinogenesis was being studied.

 Although, as Professor Stuart remarks, the proof of the result of Appendix A and
 Section 3 is not difficult, the consequences of it are interesting for non-rank-invariant
 testing. The result is that if we ever wish to do a test between two groups of observations

 which are i.i.d. under Ho, then a permutational test can be used which can never generate
 an unjustifiably high significance level and which is asymptotically efficient against
 whatever alternative behaviour is hypothesized. As an example of this, suppose we are
 asked to say whether the means of two groups of supposedly i.i.d. normal observations
 differ significantly. A t-test assumes normal distributions for its significance level to be
 valid. Is it not better to argue instead that under Ho one mean is the average of a random
 combination of appropriate size selected from the pool of both groups of observations
 mixed together? This can never be wrong, and if the observations actually are normal it
 is of full asymptotic efficiency. The general idea of giving a permutational distribution
 to the Fisher efficient score in any two-group test situation is an old one, but it is rarely
 applied.

 As a result of the ballot held during the meeting the following were elected Fellows
 of the Society:

 ANNABLE, Lawrence, B.Sc.
 BAILLIE, Richard Thomas, M.Sc.
 BALDWIN, Roger, M.Sc.
 BATES, Alan Newton, B.Sc.
 BHANSALI, Rajendra Jagmohan, Ph.D.
 BONE, Alan John, B.Sc.
 CHILVERS, David John, M.Sc. (Econ.)
 CLARK, Christopher Richard, M.Sc.
 CLARKE, David Allan
 CONRAD, Simon Andrew M.Sc.
 DAREKAR, Bal Swaruprao, M.Sc.
 DAY, William Harold Leonard, B.Sc.

 (Econ.)
 FAN, Shuh:-Ching, Ph.D., F.I.S.

 FEENY, Michael John, B.A.
 GODDARD, Paul Robert, M.Sc.
 GRAHAM, Philip Sandford, B.Sc.
 HAM, Arthur Frederick, B.Sc.
 HANSON, Patrick Robert, H.N.C. Maths.

 Stats. & Computing, A.I.S.
 HARDY, Dennis Leslie, A.I.M.T.A.
 HUSSAIN, Mohammed Yassir, B.A.
 ISHAM, Valerie Susan, B.Sc.
 KOUVATSOS, Drakoulis-Demetrius, M.Sc.
 LEWIS, Trevor, B.Sc.
 LIM SHIN CHONG, Jean Lim Chee Yiin,

 B.Sc.
 LOCK, Raymond Authur John
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 MATTHEWS, David John
 MITHANI, Almas, M.Sc.
 OBASI, Godwin Olu Patrick, D.Sc.
 PALMA CARLOS, Ana Isabel, M.Sc.
 Rix, John Philip, M.Sc. A.ILS.
 ROBINSON, Jeffrey Nicholas, M.Sc.
 SEN, Mono Ranjan, M.A.
 SHAROT, Trevor, B.Sc.
 SWARIS, Roger Neville M.Sc.
 SYM, Roger, Ph.D.

 TILLING, Richard John, B.Sc. (Econ.)
 TULPULE, Ashok Hamumant, M.A.
 VANSTONE-WALKER, Christine, B.Sc.
 WADDINGHAM, Robert Adrian Joseph, B.Sc.
 WALES, Francis Richard, F.I.A.
 WARWICK, Kenneth Marshal, Ph.D.
 WILLIAMS, Abdul-Rafiu Oladapo
 WILLS, Victor John Stormont
 YOUNG, Abimbola Sylvester, M.Sc.
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