
11
Survival Analysis and Censored Data

In this chapter, we will consider the topics of survival analysis and censored survival
analysisdata. These arise in the analysis of a unique kind of outcome variable: the
censored
data

time until an event occurs.
For example, suppose that we have conducted a five-year medical study,

in which patients have been treated for cancer. We would like to fit a model
to predict patient survival time, using features such as baseline health mea-
surements or type of treatment. At first pass, this may sound like a regres-
sion problem of the kind discussed in Chapter 3. But there is an important
complication: hopefully some or many of the patients have survived until
the end of the study. Such a patient’s survival time is said to be censored: we
know that it is at least five years, but we do not know its true value. We do
not want to discard this subset of surviving patients, as the fact that they
survived at least five years amounts to valuable information. However, it is
not clear how to make use of this information using the techniques covered
thus far in this textbook.

Though the phrase “survival analysis” evokes a medical study, the ap-
plications of survival analysis extend far beyond medicine. For example,
consider a company that wishes to model churn, the process by which cus-
tomers cancel subscription to a service. The company might collect data on
customers over some time period, in order to model each customer’s time
to cancellation as a function of demographics or other predictors. However,
presumably not all customers will have canceled their subscription by the
end of this time period; for such customers, the time to cancellation is
censored.

In fact, survival analysis is relevant even in application areas that are
unrelated to time. For instance, suppose we wish to model a person’s weight
as a function of some covariates, using a dataset with measurements for a
large number of people. Unfortunately, the scale used to weigh those people
is unable to report weights above a certain number. Then, any weights that
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470 11. Survival Analysis and Censored Data

exceed that number are censored. The survival analysis methods presented
in this chapter could be used to analyze this dataset.

Survival analysis is a very well-studied topic within statistics, due to its
critical importance in a variety of applications, both in and out of medicine.
However, it has received relatively little attention in the machine learning
community.

11.1 Survival and Censoring Times
For each individual, we suppose that there is a true survival time, T , as well survival timeas a true censoring time, C. (The survival time is also known as the failure censoring

timetime or the event time.) The survival time represents the time at which the
failure time
event time

event of interest occurs: for instance, the time at which the patient dies,
or the customer cancels his or her subscription. By contrast, the censoring
time is the time at which censoring occurs: for example, the time at which
the patient drops out of the study or the study ends.

We observe either the survival time T or else the censoring time C.
Specifically, we observe the random variable

Y = min(T,C). (11.1)

In other words, if the event occurs before censoring (i.e. T < C) then we
observe the true survival time T ; however, if censoring occurs before the
event (T > C) then we observe the censoring time. We also observe a status
indicator,

δ =

{
1 if T ≤ C

0 if T > C.

Thus, δ = 1 if we observe the true survival time, and δ = 0 if we instead
observe the censoring time.

Now, suppose we observe n (Y, δ) pairs, which we denote as (y1, δ1), . . . ,
(yn, δn). Figure 11.1 displays an example from a (fictitious) medical study
in which we observe n = 4 patients for a 365-day follow-up period. For
patients 1 and 3, we observe the time to event (such as death or disease
relapse) T = ti. Patient 2 was alive when the study ended, and patient 4
dropped out of the study, or was “lost to follow-up”; for these patients we
observe C = ci. Therefore, y1 = t1, y3 = t3, y2 = c2, y4 = c4, δ1 = δ3 = 1,
and δ2 = δ4 = 0.

11.2 A Closer Look at Censoring
In order to analyze survival data, we need to make some assumptions about
why censoring has occurred. For instance, suppose that a number of patients
drop out of a cancer study early because they are very sick. An analysis that
does not take into consideration the reason why the patients dropped out
will likely overestimate the true average survival time. Similarly, suppose
that males who are very sick are more likely to drop out of the study than
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FIGURE 11.1. Illustration of censored survival data. For patients 1 and 3, the
event was observed. Patient 2 was alive when the study ended. Patient 4 dropped
out of the study.

females who are very sick. Then a comparison of male and female survival
times may wrongly suggest that males survive longer than females.

In general, we need to assume that the censoring mechanism is indepen-
dent: conditional on the features, the event time T is independent of the
censoring time C. The two examples above violate the assumption of inde-
pendent censoring. Typically, it is not possible to determine from the data
itself whether the censoring mechanism is independent. Instead, one has to
carefully consider the data collection process in order to determine whether
independent censoring is a reasonable assumption. In the remainder of this
chapter, we will assume that the censoring mechanism is independent.1

In this chapter, we focus on right censoring, which occurs when T ≥ Y ,
i.e. the true event time T is at least as large as the observed time Y .
(Notice that T ≥ Y is a consequence of (11.1). Right censoring derives its
name from the fact that time is typically displayed from left to right, as in
Figure 11.1.) However, other types of censoring are possible. For instance,
in left censoring, the true event time T is less than or equal to the observed
time Y . For example, in a study of pregnancy duration, suppose that we
survey patients 250 days after conception, when some have already had
their babies. Then we know that for those patients, pregnancy duration is
less than 250 days. More generally, interval censoring refers to the setting
in which we do not know the exact event time, but we know that it falls
in some interval. For instance, this setting arises if we survey patients once
per week in order to determine whether the event has occurred. While left
censoring and interval censoring can be accommodated using variants of
the ideas presented in this chapter, in what follows we focus specifically on
right censoring.

1The assumption of independent censoring can be relaxed somewhat using the notion
of non-informative censoring; however, the definition of non-informative censoring is too
technical for this book.
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11.3 The Kaplan–Meier Survival Curve
The survival curve, or survival function, is defined as survival

curve
survival
function

S(t) = Pr(T > t). (11.2)

This decreasing function quantifies the probability of surviving past time
t. For example, suppose that a company is interested in modeling customer
churn. Let T represent the time that a customer cancels a subscription to
the company’s service. Then S(t) represents the probability that a customer
cancels later than time t. The larger the value of S(t), the less likely that
the customer will cancel before time t.

In this section, we will consider the task of estimating the survival
curve. Our investigation is motivated by the BrainCancer dataset, which
contains the survival times for patients with primary brain tumors un-
dergoing treatment with stereotactic radiation methods.2 The predictors
are gtv (gross tumor volume, in cubic centimeters); sex (male or female);
diagnosis (meningioma, LG glioma, HG glioma, or other); loc (the tumor
location: either infratentorial or supratentorial); ki (Karnofsky index); and
stereo (stereotactic method: either stereotactic radiosurgery or fraction-
ated stereotactic radiotherapy, abbreviated as SRS and SRT, respectively).
Only 53 of the 88 patients were still alive at the end of the study.

Now, we consider the task of estimating the survival curve (11.2) for
these data. To estimate S(20) = Pr(T > 20), the probability that a patient
survives for at least t = 20 months, it is tempting to simply compute the
proportion of patients who are known to have survived past 20 months, i.e.
the proportion of patients for whom Y > 20. This turns out to be 48/88,
or approximately 55%. However, this does not seem quite right, since Y
and T represent different quantities. In particular, 17 of the 40 patients
who did not survive to 20 months were actually censored, and this analysis
implicitly assumes that T < 20 for all of those censored patients; of course,
we do not know whether that is true.

Alternatively, to estimate S(20), we could consider computing the pro-
portion of patients for whom Y > 20, out of the 71 patients who were not
censored by time t = 20; this comes out to 48/71, or approximately 68%.
However, this is not quite right either, since it amounts to completely ig-
noring the patients who were censored before time t = 20, even though the
time at which they are censored is potentially informative. For instance, a
patient who was censored at time t = 19.9 likely would have survived past
t = 20 had he or she not been censored.

We have seen that estimating S(t) is complicated by the presence of
censoring. We now present an approach to overcome these challenges. We
let d1 < d2 < · · · < dK denote the K unique death times among the non-
censored patients, and we let qk denote the number of patients who died
at time dk. For k = 1, . . . ,K, we let rk denote the number of patients alive

2This dataset is described in the following paper: Selingerová et al. (2016) Survival
of patients with primary brain tumors: Comparison of two statistical approaches. PLoS
One, 11(2):e0148733.
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and in the study just before dk; these are the at risk patients. The set of
patients that are at risk at a given time are referred to as the risk set. risk setBy the law of total probability,3

Pr(T > dk) =Pr(T > dk|T > dk−1) Pr(T > dk−1)

+ Pr(T > dk|T ≤ dk−1) Pr(T ≤ dk−1).

The fact that dk−1 < dk implies that Pr(T > dk|T ≤ dk−1) = 0 (it is
impossible for a patient to survive past time dk if he or she did not survive
until an earlier time dk−1). Therefore,

S(dk) = Pr(T > dk) = Pr(T > dk|T > dk−1) Pr(T > dk−1).

Plugging in (11.2) again, we see that

S(dk) = Pr(T > dk|T > dk−1)S(dk−1).

This implies that

S(dk) = Pr(T > dk|T > dk−1)× · · ·× Pr(T > d2|T > d1) Pr(T > d1).

We now must simply plug in estimates of each of the terms on the right-
hand side of the previous equation. It is natural to use the estimator

P̂r(T > dj |T > dj−1) = (rj − qj)/rj ,

which is the fraction of the risk set at time dj who survived past time dj .
This leads to the Kaplan–Meier estimator of the survival curve: Kaplan–

Meier
estimator

Ŝ(dk) =
k∏

j=1

(
rj − qj

rj

)
. (11.3)

For times t between dk and dk+1, we set Ŝ(t) = Ŝ(dk). Consequently, the
Kaplan–Meier survival curve has a step-like shape.

The Kaplan–Meier survival curve for the BrainCancer data is displayed
in Figure 11.2. Each point in the solid step-like curve shows the estimated
probability of surviving past the time indicated on the horizontal axis. The
estimated probability of survival past 20 months is 71%, which is quite a
bit higher than the naive estimates of 55% and 68% presented earlier.

The sequential construction of the Kaplan–Meier estimator — starting
at time zero and mapping out the observed events as they unfold in time —
is fundamental to many of the key techniques in survival analysis. These
include the log-rank test of Section 11.4, and Cox’s proportional hazard
model of Section 11.5.2.

3The law of total probability states that for any two events A and B, Pr(A) =
Pr(A|B) Pr(B) + Pr(A|Bc) Pr(Bc), where Bc is the complement of the event B, i.e. it
is the event that B does not hold.
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FIGURE 11.2. For the BrainCancer data, we display the Kaplan–Meier survival
curve (solid curve), along with standard error bands (dashed curves).
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FIGURE 11.3. For the BrainCancer data, Kaplan–Meier survival curves for
males and females are displayed.

11.4 The Log-Rank Test
We now continue our analysis of the BrainCancer data introduced in Sec-
tion 11.3. We wish to compare the survival of males to that of females.
Figure 11.3 shows the Kaplan–Meier survival curves for the two groups.
Females seem to fare a little better up to about 50 months, but then the
two curves both level off to about 50%. How can we carry out a formal test
of equality of the two survival curves?

At first glance, a two-sample t-test seems like an obvious choice: we could
test whether the mean survival time among the females equals the mean
survival time among the males. But the presence of censoring again creates
a complication. To overcome this challenge, we will conduct a log-rank test,4 log-rank test
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Group 1 Group 2 Total
Died q1k q2k qk
Survived r1k − q1k r2k − q2k rk − qk
Total r1k r2k rk

TABLE 11.1. Among the set of patients at risk at time dk, the number of patients
who died and survived in each of two groups is reported.

which examines how the events in each group unfold sequentially in time.
Recall from Section 11.3 that d1 < d2 < · · · < dK are the unique death

times among the non-censored patients, rk is the number of patients at
risk at time dk, and qk is the number of patients who died at time dk. We
further define r1k and r2k to be the number of patients in groups 1 and 2,
respectively, who are at risk at time dk. Similarly, we define q1k and q2k to
be the number of patients in groups 1 and 2, respectively, who died at time
dk. Note that r1k + r2k = rk and q1k + q2k = qk.

At each death time dk, we construct a 2× 2 table of counts of the form
shown in Table 11.1. Note that if the death times are unique (i.e. no two
individuals die at the same time), then one of q1k and q2k equals one, and
the other equals zero.

The main idea behind the log-rank test statistic is as follows. In order
to test H0 : E(X) = µ for some random variable X, one approach is to
construct a test statistic of the form

W =
X − µ√
Var(X)

. (11.4)

To construct the log-rank test statistic, we compute a quantity that takes
exactly the form (11.4), with X =

∑K
k=1 q1k, where q1k is given in the top

left of Table 11.1.
In greater detail, if there is no difference in survival between the two

groups, and conditioning on the row and column totals in Table 11.1, the
expected value of q1k is

µk =
r1k
rk

qk. (11.5)

So the expected value of X =
∑K

k=1 q1k is µ =
∑K

k=1
r1k
rk

qk. Furthermore,
it can be shown5 that the variance of q1k is

Var (q1k) =
qk(r1k/rk)(1− r1k/rk)(rk − qk)

rk − 1
. (11.6)

Though q11, . . . , q1K may be correlated, we nonetheless estimate

Var

(
K∑

k=1

q1k

)
≈

K∑

k=1

Var (q1k) =
K∑

k=1

qk(r1k/rk)(1− r1k/rk)(rk − qk)

rk − 1
.

(11.7)

4The log-rank test is also known as the Mantel–Haenszel test or Cochran–Mantel–
Haenszel test.

5For details, see Exercise 7 at the end of this chapter.
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Therefore, to compute the log-rank test statistic, we simply proceed as
in (11.4), with X =

∑K
k=1 q1k, making use of (11.5) and (11.7). That is, we

calculate

W =

∑K
k=1 (q1k − µk)√∑K

k=1 Var (q1k)
=

∑K
k=1

(
q1k − qk

rk
r1k
)

√∑K
k=1

qk(r1k/rk)(1−r1k/rk)(rk−qk)
rk−1

. (11.8)

When the sample size is large, the log-rank test statistic W has ap-
proximately a standard normal distribution; this can be used to compute
a p-value for the null hypothesis that there is no difference between the
survival curves in the two groups.6

Comparing the survival times of females and males on the BrainCancer
data gives a log-rank test statistic of W = 1.2, which corresponds to a two-
sided p-value of 0.2 using the theoretical null distribution, and a p-value
of 0.25 using the permutation null distribution with 1,000 permutations.
Thus, we cannot reject the null hypothesis of no difference in survival curves
between females and males.

The log-rank test is closely related to Cox’s proportional hazards model,
which we discuss in Section 11.5.2.

11.5 Regression Models With a Survival Response
We now consider the task of fitting a regression model to survival data.
As in Section 11.1, the observations are of the form (Y, δ), where Y =
min(T,C) is the (possibly censored) survival time, and δ is an indicator
variable that equals 1 if T ≤ C. Furthermore, X ∈ Rp is a vector of p
features. We wish to predict the true survival time T .

Since the observed quantity Y is positive and may have a long right
tail, we might be tempted to fit a linear regression of log(Y ) on X. But
as the reader will surely guess, censoring again creates a problem since
we are actually interested in predicting T and not Y . To overcome this
difficulty, we instead make use of a sequential construction, similar to the
constructions of the Kaplan–Meier survival curve in Section 11.3 and the
log-rank test in Section 11.4.

11.5.1 The Hazard Function
The hazard function or hazard rate — also known as the force of mortality hazard

function— is formally defined as

h(t) = lim
∆t→0

Pr(t < T ≤ t+∆t|T > t)

∆t
, (11.9)

6Alternatively, we can estimate the p-value via permutations, using ideas that will
be presented in Section 13.5. The permutation distribution is obtained by randomly
swapping the labels for the observations in the two groups.
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where T is the (unobserved) survival time. It is the death rate in the instant
after time t, given survival past that time.7 In (11.9), we take the limit as
∆t approaches zero, so we can think of ∆t as being an extremely tiny
number. Thus, more informally, (11.9) implies that

h(t) ≈ Pr(t < T ≤ t+∆t|T > t)

∆t

for some arbitrarily small ∆t.
Why should we care about the hazard function? First of all, it is closely

related to the survival curve (11.2), as we will see next. Second, it turns out
that a key approach for modeling survival data as a function of covariates
relies heavily on the hazard function; we will introduce this approach —
Cox’s proportional hazards model — in Section 11.5.2.

We now consider the hazard function h(t) in a bit more detail. Recall
that for two events A and B, the probability of A given B can be expressed
as Pr(A | B) = Pr(A ∩ B)/Pr(B), i.e. the probability that A and B both
occur divided by the probability that B occurs. Furthermore, recall from
(11.2) that S(t) = Pr(T > t). Thus,

h(t) = lim
∆t→0

Pr ((t < T ≤ t+∆t) ∩ (T > t)) /∆t

Pr(T > t)

= lim
∆t→0

Pr(t < T ≤ t+∆t)/∆t

Pr(T > t)

=
f(t)

S(t)
, (11.10)

where
f(t) = lim

∆t→0

Pr(t < T ≤ t+∆t)

∆t
(11.11)

is the probability density function associated with T , i.e. it is the instanta- probability
density
function

neous rate of death at time t. The second equality in (11.10) made use of
the fact that if t < T ≤ t+∆t, then it must be the case that T > t.

Equation 11.10 implies a relationship between the hazard function h(t),
the survival function S(t), and the probability density function f(t). In
fact, these are three equivalent ways8 of describing the distribution of T .

The likelihood associated with the ith observation is

Li =

{
f(yi) if the ith observation is not censored
S(yi) if the ith observation is censored

= f(yi)
δiS(yi)

1−δi . (11.12)
The intuition behind (11.12) is as follows: if Y = yi and the ith observation
is not censored, then the likelihood is the probability of dying in a tiny in-
terval around time yi. If the ith observation is censored, then the likelihood

7Due to the ∆t in the denominator of (11.9), the hazard function is a rate of death,
rather than a probability of death. However, higher values of h(t) directly correspond
to a higher probability of death, just as higher values of a probability density function
correspond to more likely outcomes for a random variable. In fact, h(t) is the probability
density function for T conditional on T > t.

8See Exercise 8.
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is the probability of surviving at least until time yi. Assuming that the n
observations are independent, the likelihood for the data takes the form

L =
n∏

i=1

f(yi)
δiS(yi)

1−δi =
n∏

i=1

h(yi)
δiS(yi), (11.13)

where the second equality follows from (11.10).
We now consider the task of modeling the survival times. If we assume ex-

ponential survival, i.e. that the probability density function of the survival
time T takes the form f(t) = λ exp(−λt), then estimating the parameter λ
by maximizing the likelihood in (11.13) is straightforward.9 Alternatively,
we could assume that the survival times are drawn from a more flexible
family of distributions, such as the Gamma or Weibull family. Another
possibility is to model the survival times non-parametrically, as was done
in Section 11.3 using the Kaplan–Meier estimator.

However, what we would really like to do is model the survival time as
a function of the covariates. To do this, it is convenient to work directly
with the hazard function, instead of the probability density function.10

One possible approach is to assume a functional form for the hazard func-
tion h(t|xi), such as h(t|xi) = exp

(
β0 +

∑p
j=1 βjxij

)
, where the exponent

function guarantees that the hazard function is non-negative. Note that
the exponential hazard function is special, in that it does not vary with
time.11 Given h(t|xi), we could calculate S(t|xi). Plugging these equations
into (11.13), we could then maximize the likelihood in order to estimate the
parameter β = (β0,β1, . . . ,βp)T . However, this approach is quite restric-
tive, in the sense that it requires us to make a very stringent assumption
on the form of the hazard function h(t|xi). In the next section, we will
consider a much more flexible approach.

11.5.2 Proportional Hazards
The Proportional Hazards Assumption
The proportional hazards assumption states that proportional

hazards
assumption

h(t|xi) = h0(t) exp




p∑

j=1

xijβj



 , (11.14)

where h0(t) ≥ 0 is an unspecified function, known as the baseline hazard. baseline
hazardIt is the hazard function for an individual with features xi1 = · · · = xip =

0. The name “proportional hazards” arises from the fact that the hazard
function for an individual with feature vector xi is some unknown function

9See Exercise 9.
10Given the close relationship between the hazard function h(t) and the density func-

tion f(t) explored in Exercise 8, posing an assumption about the form of the hazard
function is closely related to posing an assumption about the form of the density func-
tion, as was done in the previous paragraph.

11The notation h(t|xi) indicates that we are now considering the hazard function for
the ith observation conditional on the values of the covariates, xi.
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FIGURE 11.4. Top: In a simple example with p = 1 and a binary covariate
xi ∈ {0, 1}, the log hazard and the survival function under the model (11.14)
are shown (green for xi = 0 and black for xi = 1). Because of the proportional
hazards assumption (11.14), the log hazard functions differ by a constant, and the
survival functions do not cross. Bottom: Again we have a single binary covariate
xi ∈ {0, 1}. However, the proportional hazards assumption (11.14) does not hold.
The log hazard functions cross, as do the survival functions.

h0(t) times the factor exp
(∑p

j=1 xijβj

)
. The quantity exp

(∑p
j=1 xijβj

)

is called the relative risk for the feature vector xi = (xi1, . . . , xip)T , relative
to that for the feature vector xi = (0, . . . , 0)T .

What does it mean that the baseline hazard function h0(t) in (11.14) is
unspecified? Basically, we make no assumptions about its functional form.
We allow the instantaneous probability of death at time t, given that one
has survived at least until time t, to take any form. This means that the
hazard function is very flexible and can model a wide range of relationships
between the covariates and survival time. Our only assumption is that a
one-unit increase in xij corresponds to an increase in h(t|xi) by a factor of
exp(βj).

An illustration of the proportional hazards assumption (11.14) is given in
Figure 11.4, in a simple setting with a single binary covariate xi ∈ {0, 1} (so
that p = 1). In the top row, the proportional hazards assumption (11.14)
holds. Thus, the hazard functions of the two groups are a constant multiple
of each other, so that on the log scale, the gap between them is constant.
Furthermore, the survival curves never cross, and in fact the gap between
the survival curves tends to (initially) increase over time. By contrast, in
the bottom row, (11.14) does not hold. We see that the log hazard functions
for the two groups cross, as do the survival curves.
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Cox’s Proportional Hazards Model
Because the form of h0(t) in the proportional hazards assumption (11.14)
is unknown, we cannot simply plug h(t|xi) into the likelihood (11.13) and
then estimate β = (β1, . . . ,βp)T by maximum likelihood. The magic of
Cox’s proportional hazards model lies in the fact that it is in fact possible Cox’s

proportional
hazards
model

to estimate β without having to specify the form of h0(t).
To accomplish this, we make use of the same “sequential in time” logic

that we used to derive the Kaplan–Meier survival curve and the log-rank
test. For simplicity, assume that there are no ties among the failure, or
death, times: i.e. each failure occurs at a distinct time. Assume that δi =
1, i.e. the ith observation is uncensored, and thus yi is its failure time.
Then the hazard function for the ith observation at time yi is h(yi|xi) =

h0(yi) exp
(∑p

j=1 xijβj

)
, and the total hazard at time yi for the at risk

observations12 is

∑

i′:yi′≥yi

h0(yi) exp




p∑

j=1

xi′jβj



 .

Therefore, the probability that the ith observation is the one to fail at time
yi (as opposed to one of the other observations in the risk set) is

h0(yi) exp
(∑p

j=1 xijβj

)

∑
i′:yi′≥yi

h0(yi) exp
(∑p

j=1 xi′jβj

) =
exp

(∑p
j=1 xijβj

)

∑
i′:yi′≥yi

exp
(∑p

j=1 xi′jβj

) .

(11.15)
Notice that the unspecified baseline hazard function h0(yi) cancels out of
the numerator and denominator!

The partial likelihood is simply the product of these probabilities over all partial
likelihoodof the uncensored observations,

PL(β) =
∏

i:δi=1

exp
(∑p

j=1 xijβj

)

∑
i′:yi′≥yi

exp
(∑p

j=1 xi′jβj

) . (11.16)

Critically, the partial likelihood is valid regardless of the true value of h0(t),
making the model very flexible and robust.13

To estimate β, we simply maximize the partial likelihood (11.16) with
respect to β. As was the case for logistic regression in Chapter 4, no closed-
form solution is available, and so iterative algorithms are required.

In addition to estimating β, we can also obtain other model outputs that
we saw in the context of least squares regression in Chapter 3 and logistic
regression in Chapter 4. For example, we can obtain p-values corresponding

12Recall that the “at risk” observations at time yi are those that are still at risk of
failure, i.e. those that have not yet failed or been censored before time yi.

13In general, the partial likelihood is used in settings where it is difficult to compute
the full likelihood for all of the parameters. Instead, we compute a likelihood for just the
parameters of primary interest: in this case, β1, . . . ,βp. It can be shown that maximizing
(11.16) provides good estimates for these parameters.



11.5 Regression Models With a Survival Response 481

to particular null hypotheses (e.g. H0 : βj = 0), as well as confidence
intervals associated with the coefficients.

Connection With The Log-Rank Test
Suppose we have just a single predictor (p = 1), which we assume to be
binary, i.e. xi ∈ {0, 1}. In order to determine whether there is a difference
between the survival times of the observations in the group {i : xi = 0}
and those in the group {i : xi = 1}, we can consider taking two possible
approaches:

Approach #1: Fit a Cox proportional hazards model, and test the
null hypothesis H0 : β = 0. (Since p = 1, β is a scalar.)

Approach #2: Perform a log-rank test to compare the two groups, as
in Section 11.4.

Which one should we prefer?
In fact, there is a close relationship between these two approaches. In

particular, when taking Approach #1, there are a number of possible ways
to test H0. One way is known as a score test. It turns out that in the case of
a single binary covariate, the score test for H0 : β = 0 in Cox’s proportional
hazards model is exactly equal to the log-rank test. In other words, it does
not matter whether we take Approach #1 or Approach #2!

Additional Details
The discussion of Cox’s proportional hazards model glossed over a few
subtleties:

• There is no intercept in (11.14) nor in the equations that follow,
because an intercept can be absorbed into the baseline hazard h0(t).

• We have assumed that there are no tied failure times. In the case
of ties, the exact form of the partial likelihood (11.16) is a bit more
complicated, and a number of computational approximations must
be used.

• (11.16) is known as the partial likelihood because it is not exactly a
likelihood. That is, it does not correspond exactly to the probability
of the data under the assumption (11.14). However, it is a very good
approximation.

• We have focused only on estimation of the coefficients β = (β1, . . . ,βp)T .
However, at times we may also wish to estimate the baseline hazard
h0(t), for instance so that we can estimate the survival curve S(t|x) for
an individual with feature vector x. The details are beyond the scope
of this book. Estimation of h0(t) is implemented in the lifelines
package in Python, which we will see in Section 11.8.
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11.5.3 Example: Brain Cancer Data
Table 11.2 shows the result of fitting the proportional hazards model to
the BrainCancer data, which was originally described in Section 11.3. The
coefficient column displays β̂j . The results indicate, for instance, that the
estimated hazard for a male patient is e0.18 = 1.2 times greater than for
a female patient: in other words, with all other features held fixed, males
have a 1.2 times greater chance of dying than females, at any point in time.
However, the p-value is 0.61, which indicates that this difference between
males and females is not significant.

As another example, we also see that each one-unit increase in the
Karnofsky index corresponds to a multiplier of exp(−0.05) = 0.95 in the
instantaneous chance of dying. In other words, the higher the Karnofsky
index, the lower the chance of dying at any given point in time. This effect
is highly significant, with a p-value of 0.0027.

Coefficient Std. error z-statistic p-value
sex[Male] 0.18 0.36 0.51 0.61
diagnosis[LG Glioma] 0.92 0.64 1.43 0.15
diagnosis[HG Glioma] 2.15 0.45 4.78 0.00
diagnosis[Other] 0.89 0.66 1.35 0.18
loc[Supratentorial] 0.44 0.70 0.63 0.53
ki -0.05 0.02 -3.00 <0.01
gtv 0.03 0.02 1.54 0.12
stereo[SRT] 0.18 0.60 0.30 0.77

TABLE 11.2. Results for Cox’s proportional hazards model fit to the
BrainCancer data, which was first described in Section 11.3. The variable
diagnosis is qualitative with four levels: meningioma, LG glioma, HG glioma,
or other. The variables sex, loc, and stereo are binary.

11.5.4 Example: Publication Data
Next, we consider the dataset Publication involving the time to publica-
tion of journal papers reporting the results of clinical trials funded by the
National Heart, Lung, and Blood Institute.14 For 244 trials, the time in
months until publication is recorded. Of the 244 trials, only 156 were pub-
lished during the study period; the remaining studies were censored. The
covariates include whether the trial focused on a clinical endpoint (clinend),
whether the trial involved multiple centers (multi), the funding mechanism
within the National Institutes of Health (mech), trial sample size (sampsize),
budget (budget), impact (impact, related to the number of citations), and
whether the trial produced a positive (significant) result (posres). The last
covariate is particularly interesting, as a number of studies have suggested
that positive trials have a higher publication rate.

14This dataset is described in the following paper: Gordon et al. (2013) Publication of
trials funded by the National Heart, Lung, and Blood Institute. New England Journal
of Medicine, 369(20):1926–1934.
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FIGURE 11.5. Survival curves for time until publication for the Publication
data described in Section 11.5.4, stratified by whether or not the study produced
a positive result.

Figure 11.5 shows the Kaplan–Meier curves for the time until publication,
stratified by whether or not the study produced a positive result. We see
slight evidence that time until publication is lower for studies with a positive
result. However, the log-rank test yields a very unimpressive p-value of 0.36.

We now consider a more careful analysis that makes use of all of the
available predictors. The results of fitting Cox’s proportional hazards model
using all of the available features are shown in Table 11.3. We find that the
chance of publication of a study with a positive result is e0.55 = 1.74 times
higher than the chance of publication of a study with a negative result
at any point in time, holding all other covariates fixed. The very small
p-value associated with posres in Table 11.3 indicates that this result is
highly significant. This is striking, especially in light of our earlier finding
that a log-rank test comparing time to publication for studies with positive
versus negative results yielded a p-value of 0.36. How can we explain this
discrepancy? The answer stems from the fact that the log-rank test did not
consider any other covariates, whereas the results in Table 11.3 are based
on a Cox model using all of the available covariates. In other words, after
we adjust for all of the other covariates, then whether or not the study
yielded a positive result is highly predictive of the time to publication.

In order to gain more insight into this result, in Figure 11.6 we display
estimates of the survival curves associated with positive and negative re-
sults, adjusting for the other predictors. To produce these survival curves,
we estimated the underlying baseline hazard h0(t). We also needed to se-
lect representative values for the other predictors; we used the mean value
for each predictor, except for the categorical predictor mech, for which we
used the most prevalent category (R01). Adjusting for the other predictors,
we now see a clear difference in the survival curves between studies with
positive versus negative results.

Other interesting insights can be gleaned from Table 11.3. For example,
studies with a clinical endpoint are more likely to be published at any
given point in time than those with a non-clinical endpoint. The funding
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Coefficient Std. error z-statistic p-value
posres[Yes] 0.55 0.18 3.02 0.00
multi[Yes] 0.15 0.31 0.47 0.64
clinend[Yes] 0.51 0.27 1.89 0.06
mech[K01] 1.05 1.06 1.00 0.32
mech[K23] -0.48 1.05 -0.45 0.65
mech[P01] -0.31 0.78 -0.40 0.69
mech[P50] 0.60 1.06 0.57 0.57
mech[R01] 0.10 0.32 0.30 0.76
mech[R18] 1.05 1.05 0.99 0.32
mech[R21] -0.05 1.06 -0.04 0.97
mech[R24,K24] 0.81 1.05 0.77 0.44
mech[R42] -14.78 3414.38 -0.00 1.00
mech[R44] -0.57 0.77 -0.73 0.46
mech[RC2] -14.92 2243.60 -0.01 0.99
mech[U01] -0.22 0.32 -0.70 0.48
mech[U54] 0.47 1.07 0.44 0.66
sampsize 0.00 0.00 0.19 0.85
budget 0.00 0.00 1.67 0.09
impact 0.06 0.01 8.23 0.00

TABLE 11.3. Results for Cox’s proportional hazards model fit to the
Publication data, using all of the available features. The features posres, multi,
and clinend are binary. The feature mech is qualitative with 14 levels; it is coded
so that the baseline level is Contract.

mechanism did not appear to be significantly associated with time until
publication.

11.6 Shrinkage for the Cox Model
In this section, we illustrate that the shrinkage methods of Section 6.2
can be applied to the survival data setting. In particular, motivated by
the “loss+penalty” formulation of Section 6.2, we consider minimizing a
penalized version of the negative log partial likelihood in (11.16),

− log




∏

i:δi=1

exp
(∑p

j=1 xijβj

)

∑
i′:yi′≥yi

exp
(∑p

j=1 xi′jβj

)



+ λP (β), (11.17)

with respect to β = (β1, . . . ,βp)T . We might take P (β) =
∑p

j=1 β
2
j , which

corresponds to a ridge penalty, or P (β) =
∑p

j=1 |βj |, which corresponds to
a lasso penalty.

In (11.17), λ is a non-negative tuning parameter; typically we will mini-
mize it over a range of values of λ. When λ = 0, then minimizing (11.17) is
equivalent to simply maximizing the usual Cox partial likelihood (11.16).
However, when λ > 0, then minimizing (11.17) yields a shrunken version of
the coefficient estimates. When λ is large, then using a ridge penalty will
give small coefficients that are not exactly equal to zero. By contrast, for a
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FIGURE 11.6. For the Publication data, we display survival curves for time
until publication, stratified by whether or not the study produced a positive result,
after adjusting for all other covariates.

sufficiently large value of λ, using a lasso penalty will give some coefficients
that are exactly equal to zero.

We now apply the lasso-penalized Cox model to the Publication data, de-
scribed in Section 11.5.4. We first randomly split the 244 trials into equally-
sized training and test sets. The cross-validation results from the training
set are shown in Figure 11.7. The “partial likelihood deviance”, shown on
the y-axis, is twice the cross-validated negative log partial likelihood; it
plays the role of the cross-validation error.15 Note the “U-shape” of the
partial likelihood deviance: just as we saw in previous chapters, the cross-
validation error is minimized for an intermediate level of model complexity.
Specifically, this occurs when just two predictors, budget and impact, have
non-zero estimated coefficients.

Now, how do we apply this model to the test set? This brings up an
important conceptual point: in essence, there is no simple way to compare
predicted survival times and true survival times on the test set. The first
problem is that some of the observations are censored, and so the true sur-
vival times for those observations are unobserved. The second issue arises
from the fact that in the Cox model, rather than predicting a single sur-
vival time given a covariate vector x, we instead estimate an entire survival
curve, S(t|x), as a function of t.

Therefore, to assess the model fit, we must take a different approach,
which involves stratifying the observations using the coefficient estimates.
In particular, for each test observation, we compute the “risk” score

budgeti · β̂budget + impacti · β̂impact,

where β̂budget and β̂impact are the coefficient estimates for these two features
from the training set. We then use these risk scores to categorize the obser-
vations based on their “risk”. For instance, the high risk group consists of
the observations for which budgeti · β̂budget+impacti · β̂impact is largest; by

15Cross-validation for the Cox model is more involved than for linear or logistic re-
gression, because the objective function is not a sum over the observations.
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FIGURE 11.7. For the Publication data described in Section 11.5.4, cross-val-
idation results for the lasso-penalized Cox model are shown. The y-axis displays
the partial likelihood deviance, which plays the role of the cross-validation error.
The x-axis displays the &1 norm (that is, the sum of the absolute values) of the
coefficients of the lasso-penalized Cox model with tuning parameter λ, divided by
the &1 norm of the coefficients of the unpenalized Cox model. The dashed line
indicates the minimum cross-validation error.

(11.14), we see that these are the observations for which the instantaneous
probability of being published at any moment in time is largest. In other
words, the high risk group consists of the trials that are likely to be pub-
lished sooner. On the Publication data, we stratify the observations into
tertiles of low, medium, and high risk. The resulting survival curves for
each of the three strata are displayed in Figure 11.8. We see that there is
clear separation between the three strata, and that the strata are correctly
ordered in terms of low, medium, and high risk of publication.

11.7 Additional Topics
11.7.1 Area Under the Curve for Survival Analysis
In Chapter 4, we introduced the area under the ROC curve — often referred
to as the “AUC” — as a way to quantify the performance of a two-class clas-
sifier. Define the score for the ith observation to be the classifier’s estimate
of Pr(Y = 1|X = xi). It turns out that if we consider all pairs consisting of
one observation in Class 1 and one observation in Class 2, then the AUC
is the fraction of pairs for which the score for the observation in Class 1
exceeds the score for the observation in Class 2.

This suggests a way to generalize the notion of AUC to survival anal-
ysis. We calculate an estimated risk score, η̂i = β̂1xi1 + · · · + β̂pxip, for
i = 1, . . . , n, using the Cox model coefficients. If η̂i′ > η̂i, then the model
predicts that the i′th observation has a larger hazard than the ith obser-
vation, and thus that the survival time ti will be greater than ti′ . Thus, it
is tempting to try to generalize AUC by computing the proportion of ob-
servations for which ti > ti′ and η̂i′ > η̂i. However, things are not quite so
easy, because recall that we do not observe t1, . . . , tn; instead, we observe
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FIGURE 11.8. For the Publication data introduced in Section 11.5.4, we
compute tertiles of “risk” in the test set using coefficients estimated on the training
set. There is clear separation between the resulting survival curves.

the (possibly-censored) times y1, . . . , yn, as well as the censoring indicators
δ1, . . . , δn.

Therefore, Harrell’s concordance index (or C-index) computes the pro- Harrell’s
concordance
index

portion of observation pairs for which η̂i′ > η̂i and yi > yi′ :

C =

∑
i,i′:yi>yi′

I(η̂i′ > η̂i)δi′∑
i,i′:yi>yi′

δi′
,

where the indicator variable I(η̂i′ > η̂i) equals one if η̂i′ > η̂i, and equals
zero otherwise. The numerator and denominator are multiplied by the sta-
tus indicator δi′ , since if the i′th observation is uncensored (i.e. if δi′ = 1),
then yi > yi′ implies that ti > ti′ . By contrast, if δi′ = 0, then yi > yi′
does not imply that ti > ti′ .

We fit a Cox proportional hazards model on the training set of the
Publication data, and computed the C-index on the test set. This yielded
C = 0.733. Roughly speaking, given two random papers from the test set,
the model can predict with 73.3% accuracy which will be published first.

11.7.2 Choice of Time Scale
In the examples considered thus far in this chapter, it has been fairly clear
how to define time. For example, in the Publication example, time zero for
each paper was defined to be the calendar time at the end of the study,
and the failure time was defined to be the number of months that elapsed
from the end of the study until the paper was published.

However, in other settings, the definitions of time zero and failure time
may be more subtle. For example, when examining the association between
risk factors and disease occurrence in an epidemiological study, one might
use the patient’s age to define time, so that time zero is the patient’s date
of birth. With this choice, the association between age and survival cannot
be measured; however, there is no need to adjust for age in the analysis.
When examining covariates associated with disease-free survival (i.e. the
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amount of time elapsed between treatment and disease recurrence), one
might use the date of treatment as time zero.

11.7.3 Time-Dependent Covariates
A powerful feature of the proportional hazards model is its ability to handle
time-dependent covariates, predictors whose value may change over time.
For example, suppose we measure a patient’s blood pressure every week
over the course of a medical study. In this case, we can think of the blood
pressure for the ith observation not as xi, but rather as xi(t) at time t.

Because the partial likelihood in (11.16) is constructed sequentially in
time, dealing with time-dependent covariates is straightforward. In partic-
ular, we simply replace xij and xi′j in (11.16) with xij(yi) and xi′j(yi),
respectively; these are the current values of the predictors at time yi. By
contrast, time-dependent covariates would pose a much greater challenge
within the context of a traditional parametric approach, such as (11.13).

One example of time-dependent covariates appears in the analysis of data
from the Stanford Heart Transplant Program. Patients in need of a heart
transplant were put on a waiting list. Some patients received a transplant,
but others died while still on the waiting list. The primary objective of the
analysis was to determine whether a transplant was associated with longer
patient survival.

A naïve approach would use a fixed covariate to represent transplant
status: that is, xi = 1 if the ith patient ever received a transplant, and xi =
0 otherwise. But this approach overlooks the fact that patients had to live
long enough to get a transplant, and hence, on average, healthier patients
received transplants. This problem can be solved by using a time-dependent
covariate for transplant: xi(t) = 1 if the patient received a transplant by
time t, and xi(t) = 0 otherwise.

11.7.4 Checking the Proportional Hazards Assumption
We have seen that Cox’s proportional hazards model relies on the propor-
tional hazards assumption (11.14). While results from the Cox model tend
to be fairly robust to violations of this assumption, it is still a good idea to
check whether it holds. In the case of a qualitative feature, we can plot the
log hazard function for each level of the feature. If (11.14) holds, then the
log hazard functions should just differ by a constant, as seen in the top-left
panel of Figure 11.4. In the case of a quantitative feature, we can take a
similar approach by stratifying the feature.

11.7.5 Survival Trees
In Chapter 8, we discussed flexible and adaptive learning procedures such as
trees, random forests, and boosting, which we applied in both the regression
and classification settings. Most of these approaches can be generalized to
the survival analysis setting. For example, survival trees are a modification survival

treesof classification and regression trees that use a split criterion that maximizes
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the difference between the survival curves in the resulting daughter nodes.
Survival trees can then be used to create random survival forests.

11.8 Lab: Survival Analysis
In this lab, we perform survival analyses on three separate data sets. In
Section 11.8.1 we analyze the BrainCancer data that was first described
in Section 11.3. In Section 11.8.2, we examine the Publication data from
Section 11.5.4. Finally, Section 11.8.3 explores a simulated call-center data
set.

We begin by importing some of our libraries at this top level. This makes
the code more readable, as scanning the first few lines of the notebook tell
us what libraries are used in this notebook.

In [1]: from matplotlib.pyplot import subplots
import numpy as np
import pandas as pd
from ISLP.models import ModelSpec as MS
from ISLP import load_data

We also collect the new imports needed for this lab.
In [2]: from lifelines import \

(KaplanMeierFitter,
CoxPHFitter)

from lifelines.statistics import \
(logrank_test,
multivariate_logrank_test)

from ISLP.survival import sim_time

11.8.1 Brain Cancer Data
We begin with the BrainCancer data set, contained in the ISLP package.

In [3]: BrainCancer = load_data('BrainCancer')
BrainCancer.columns

Out[3]: Index(['sex', 'diagnosis', 'loc', 'ki', 'gtv', 'stereo',
'status', 'time'],
dtype='object')

The rows index the 88 patients, while the 8 columns contain the predictors
and outcome variables. We first briefly examine the data.

In [4]: BrainCancer['sex'].value_counts()

Out[4]: Female 45
Male 43
Name: sex, dtype: int64

In [5]: BrainCancer['diagnosis'].value_counts()
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Out[5]: Meningioma 42
HG glioma 22
Other 14
LG glioma 9
Name: diagnosis, dtype: int64

In [6]: BrainCancer['status'].value_counts()

Out[6]: 0 53
1 35
Name: status, dtype: int64

Before beginning an analysis, it is important to know how the status
variable has been coded. Most software uses the convention that a status
of 1 indicates an uncensored observation (often death), and a status of 0
indicates a censored observation. But some scientists might use the opposite
coding. For the BrainCancer data set 35 patients died before the end of the
study, so we are using the conventional coding.

To begin the analysis, we re-create the Kaplan-Meier survival curve
shown in Figure 11.2. The main package we will use for survival analy-
sis is lifelines. The variable time corresponds to yi, the time to the ith lifelinesevent (either censoring or death). The first argument to km.fit is the event
time, and the second argument is the censoring variable, with a 1 indicat-
ing an observed failure time. The plot() method produces a survival curve .plot()with pointwise confidence intervals. By default, these are 90% confidence
intervals, but this can be changed by setting the alpha argument to one
minus the desired confidence level.

In [7]: fig, ax = subplots(figsize=(8,8))
km = KaplanMeierFitter()
km_brain = km.fit(BrainCancer['time'], BrainCancer['status'])
km_brain.plot(label='Kaplan Meier estimate', ax=ax)

Next we create Kaplan-Meier survival curves that are stratified by sex, in
order to reproduce Figure 11.3. We do this using the groupby() method of .groupby()a dataframe. This method returns a generator that can be iterated over in
the for loop. In this case, the items in the for loop are 2-tuples representing
the groups: the first entry is the value of the grouping column sex while
the second value is the dataframe consisting of all rows in the dataframe
matching that value of sex. We will want to use this data below in the log-
rank test, hence we store this information in the dictionary by_sex. Finally,
we have also used the notion of string interpolation to automatically label string

interpolationthe different lines in the plot. String interpolation is a powerful technique
to format strings — Python has many ways to facilitate such operations.

In [8]: fig, ax = subplots(figsize=(8,8))
by_sex = {}
for sex, df in BrainCancer.groupby('sex'):

by_sex[sex] = df
km_sex = km.fit(df['time'], df['status'])
km_sex.plot(label='Sex=%s' % sex, ax=ax)

As discussed in Section 11.4, we can perform a log-rank test to compare
the survival of males to females. We use the logrank_test() function from logrank_

test()
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the lifelines.statistics module. The first two arguments are the event
times, with the second denoting the corresponding (optional) censoring
indicators.

In [9]: logrank_test(by_sex['Male']['time'],
by_sex['Female']['time'],
by_sex['Male']['status'],
by_sex['Female']['status'])

Out[9]: t_0 -1
null_distribution chi squared

degrees_of_freedom 1
test_name logrank_test

test_statistic p -log2(p)
1.44 0.23 2.12

The resulting p-value is 0.23, indicating no evidence of a difference in
survival between the two sexes.

Next, we use the CoxPHFitter() estimator from lifelines to fit Cox CoxPHFitter()proportional hazards models. To begin, we consider a model that uses sex
as the only predictor.

In [10]: coxph = CoxPHFitter # shorthand
sex_df = BrainCancer[['time', 'status', 'sex']]
model_df = MS(['time', 'status', 'sex'],

intercept=False).fit_transform(sex_df)
cox_fit = coxph().fit(model_df,

'time',
'status')

cox_fit.summary[['coef', 'se(coef)', 'p']]

Out[10]: coef se(coef) p
covariate
sex[Male] 0.407667 0.342004 0.233263

The first argument to fit should be a data frame containing at least the
event time (the second argument time in this case), as well as an op-
tional censoring variable (the argument status in this case). Note also that
the Cox model does not include an intercept, which is why we used the
intercept=False argument to ModelSpec above. The summary() method de-
livers many columns; we chose to abbreviate its output here. It is possible
to obtain the likelihood ratio test comparing this model to the one with no
features as follows:

In [11]: cox_fit.log_likelihood_ratio_test()

Out[11]: null_distribution chi squared
degrees_freedom 1

test_name log-likelihood ratio test

test_statistic p -log2(p)
1.44 0.23 2.12
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Regardless of which test we use, we see that there is no clear evidence for
a difference in survival between males and females. As we learned in this
chapter, the score test from the Cox model is exactly equal to the log rank
test statistic!

Now we fit a model that makes use of additional predictors. We first note
that one of our diagnosis values is missing, hence we drop that observation
before continuing.

In [12]: cleaned = BrainCancer.dropna()
all_MS = MS(cleaned.columns, intercept=False)
all_df = all_MS.fit_transform(cleaned)
fit_all = coxph().fit(all_df,

'time',
'status')

fit_all.summary[['coef', 'se(coef)', 'p']]

Out[12]: coef se(coef) p
covariate
sex[Male] 0.183748 0.360358 0.610119

diagnosis[LG glioma] -1.239541 0.579557 0.032454
diagnosis[Meningioma] -2.154566 0.450524 0.000002

diagnosis[Other] -1.268870 0.617672 0.039949
loc[Supratentorial] 0.441195 0.703669 0.530664

ki -0.054955 0.018314 0.002693
gtv 0.034293 0.022333 0.124660

stereo[SRT] 0.177778 0.601578 0.767597

The diagnosis variable has been coded so that the baseline corresponds to
HG glioma. The results indicate that the risk associated with HG glioma
is more than eight times (i.e. e2.15 = 8.62) the risk associated with menin-
gioma. In other words, after adjusting for the other predictors, patients
with HG glioma have much worse survival compared to those with menin-
gioma. In addition, larger values of the Karnofsky index, ki, are associated
with lower risk, i.e. longer survival.

Finally, we plot estimated survival curves for each diagnosis category,
adjusting for the other predictors. To make these plots, we set the values of
the other predictors equal to the mean for quantitative variables and equal
to the mode for categorical. To do this, we use the apply() method across
rows (i.e. axis=0) with a function representative that checks if a column
is categorical or not.

In [13]: levels = cleaned['diagnosis'].unique()
def representative(series):

if hasattr(series.dtype, 'categories'):
return pd.Series.mode(series)

else:
return series.mean()

modal_data = cleaned.apply(representative, axis=0)

We make four copies of the column means and assign the diagnosis
column to be the four different diagnoses.

In [14]: modal_df = pd.DataFrame(
[modal_data.iloc[0] for _ in range(len(levels))])

modal_df['diagnosis'] = levels
modal_df
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Out[14]: sex diagnosis loc ki gtv stereo ...
Female Meningioma Supratentorial 80.920 8.687 SRT ...
Female HG glioma Supratentorial 80.920 8.687 SRT ...
Female LG glioma Supratentorial 80.920 8.687 SRT ...
Female Other Supratentorial 80.920 8.687 SRT ...

We then construct the model matrix based on the model specification
all_MS used to fit the model, and name the rows according to the levels of
diagnosis.

In [15]: modal_X = all_MS.transform(modal_df)
modal_X.index = levels
modal_X

We can use the predict_survival_function() method to obtain the esti- .predict_
survival_
function()

mated survival function.
In [16]: predicted_survival = fit_all.predict_survival_function(modal_X)

predicted_survival

Out[16]: Meningioma HG glioma LG glioma Other
0.070 0.998 0.982 0.995 0.995
1.180 0.998 0.982 0.995 0.995
1.410 0.996 0.963 0.989 0.990
1.540 0.996 0.963 0.989 0.990

... ... ... ... ...
67.380 0.689 0.040 0.394 0.405
73.740 0.689 0.040 0.394 0.405
78.750 0.689 0.040 0.394 0.405
82.560 0.689 0.040 0.394 0.405
85 rows × 4 columns

This returns a data frame, whose plot methods yields the different survival
curves. To avoid clutter in the plots, we do not display confidence intervals.

In [17]: fig, ax = subplots(figsize=(8, 8))
predicted_survival.plot(ax=ax);

11.8.2 Publication Data
The Publication data presented in Section 11.5.4 can be found in the
ISLP package. We first reproduce Figure 11.5 by plotting the Kaplan-Meier
curves stratified on the posres variable, which records whether the study
had a positive or negative result.

In [18]: fig, ax = subplots(figsize=(8,8))
Publication = load_data('Publication')
by_result = {}
for result, df in Publication.groupby('posres'):

by_result[result] = df
km_result = km.fit(df['time'], df['status'])
km_result.plot(label='Result=%d' % result, ax=ax)

As discussed previously, the p-values from fitting Cox’s proportional haz-
ards model to the posres variable are quite large, providing no evidence
of a difference in time-to-publication between studies with positive versus
negative results.
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In [19]: posres_df = MS(['posres',
'time',
'status'],
intercept=False).fit_transform(Publication)

posres_fit = coxph().fit(posres_df,
'time',
'status')

posres_fit.summary[['coef', 'se(coef)', 'p']]

Out[19]: coef se(coef) p
covariate

posres 0.148076 0.161625 0.359578

However, the results change dramatically when we include other predic-
tors in the model. Here we exclude the funding mechanism variable.

In [20]: model = MS(Publication.columns.drop('mech'),
intercept=False)

coxph().fit(model.fit_transform(Publication),
'time',
'status').summary[['coef', 'se(coef)', 'p']]

Out[20]: coef se(coef) p
covariate

posres 0.570774 0.175960 1.179606e-03
multi -0.040863 0.251194 8.707727e-01

clinend 0.546180 0.262001 3.710099e-02
sampsize 0.000005 0.000015 7.506978e-01

budget 0.004386 0.002464 7.511276e-02
impact 0.058318 0.006676 2.426779e-18

We see that there are a number of statistically significant variables, in-
cluding whether the trial focused on a clinical endpoint, the impact of the
study, and whether the study had positive or negative results.

11.8.3 Call Center Data
In this section, we will simulate survival data using the relationship between
cumulative hazard and the survival function explored in Exercise 8. Our
simulated data will represent the observed wait times (in seconds) for 2,000
customers who have phoned a call center. In this context, censoring occurs
if a customer hangs up before his or her call is answered.

There are three covariates: Operators (the number of call center operators
available at the time of the call, which can range from 5 to 15), Center
(either A, B, or C), and Time of day (Morning, Afternoon, or Evening). We
generate data for these covariates so that all possibilities are equally likely:
for instance, morning, afternoon and evening calls are equally likely, and
any number of operators from 5 to 15 is equally likely.

In [21]: rng = np.random.default_rng(10)
N = 2000
Operators = rng.choice(np.arange(5, 16),

N,
replace=True)
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Center = rng.choice(['A', 'B', 'C'],
N,
replace=True)

Time = rng.choice(['Morn.', 'After.', 'Even.'],
N,
replace=True)

D = pd.DataFrame({'Operators': Operators,
'Center': pd.Categorical(Center),
'Time': pd.Categorical(Time)})

We then build a model matrix (omitting the intercept)
In [22]: model = MS(['Operators',

'Center',
'Time'],

intercept=False)
X = model.fit_transform(D)

It is worthwhile to take a peek at the model matrix X, so that we can be
sure that we understand how the variables have been coded. By default,
the levels of categorical variables are sorted and, as usual, the first column
of the one-hot encoding of the variable is dropped.

In [23]: X[:5]

Out[23]: Operators Center[B] Center[C] Time[Even.] Time[Morn.]
0 13 0.0 1.0 0.0 0.0
1 15 0.0 0.0 1.0 0.0
2 7 1.0 0.0 0.0 1.0
3 7 0.0 1.0 0.0 1.0
4 13 0.0 1.0 1.0 0.0

Next, we specify the coefficients and the hazard function.
In [24]: true_beta = np.array([0.04, -0.3, 0, 0.2, -0.2])

true_linpred = X.dot(true_beta)
hazard = lambda t: 1e-5 * t

Here, we have set the coefficient associated with Operators to equal 0.04;
in other words, each additional operator leads to a e0.04 = 1.041-fold in-
crease in the “risk” that the call will be answered, given the Center and
Time covariates. This makes sense: the greater the number of operators at
hand, the shorter the wait time! The coefficient associated with Center ==
B is −0.3, and Center == A is treated as the baseline. This means that the
risk of a call being answered at Center B is 0.74 times the risk that it will
be answered at Center A; in other words, the wait times are a bit longer
at Center B.

Recall from Section 2.3.7 the use of lambda for creating short functions
on the fly. We use the function sim_time() from the ISLP.survival pack- sim_time()age. This function uses the relationship between the survival function and
cumulative hazard S(t) = exp(−H(t)) and the specific form of the cumu-
lative hazard function in the Cox model to simulate data based on values
of the linear predictor true_linpred and the cumulative hazard. We need
to provide the cumulative hazard function, which we do here.

In [25]: cum_hazard = lambda t: 1e-5 * t**2 / 2
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We are now ready to generate data under the Cox proportional hazards
model. We truncate the maximum time to 1000 seconds to keep simulated
wait times reasonable. The function sim_time() takes a linear predictor, a
cumulative hazard function and a random number generator.

In [26]: W = np.array([sim_time(l, cum_hazard, rng)
for l in true_linpred])

D['Wait time'] = np.clip(W, 0, 1000)

We now simulate our censoring variable, for which we assume 90% of
calls were answered (Failed==1) before the customer hung up (Failed==0).

In [27]: D['Failed'] = rng.choice([1, 0],
N,
p=[0.9, 0.1])

D[:5]

Out[27]: Operators Center Time Wait time Failed
0 13 C After. 525.064979 1
1 15 A Even. 254.677835 1
2 7 B Morn. 487.739224 1
3 7 C Morn. 308.580292 1
4 13 C Even. 154.174608 1

In [28]: D['Failed'].mean()

Out[28]: 0.8985

We now plot Kaplan-Meier survival curves. First, we stratify by Center.
In [29]: fig, ax = subplots(figsize=(8,8))

by_center = {}
for center, df in D.groupby('Center'):

by_center[center] = df
km_center = km.fit(df['Wait time'], df['Failed'])
km_center.plot(label='Center=%s' % center, ax=ax)

ax.set_title("Probability of Still Being on Hold")

Next, we stratify by Time.
In [30]: fig, ax = subplots(figsize=(8,8))

by_time = {}
for time, df in D.groupby('Time'):

by_time[time] = df
km_time = km.fit(df['Wait time'], df['Failed'])
km_time.plot(label='Time=%s' % time, ax=ax)

ax.set_title("Probability of Still Being on Hold")

It seems that calls at Call Center B take longer to be answered than calls
at Centers A and C. Similarly, it appears that wait times are longest in the
morning and shortest in the evening hours. We can use a log-rank test to
determine whether these differences are statistically significant using the
function multivariate_logrank_test().

In [31]: multivariate_logrank_test(D['Wait time'],
D['Center'],
D['Failed'])



11.8 Lab: Survival Analysis 497

Out[31]: t_0 -1
null_distribution chi squared

degrees_of_freedom 2
test_name multivariate_logrank_test

test_statistic p -log2(p)
20.30 <0.005 14.65

Next, we consider the effect of Time.
In [32]: multivariate_logrank_test(D['Wait time'],

D['Time'],
D['Failed'])

Out[32]: t_0 -1
null_distribution chi squared

degrees_of_freedom 2
test_name multivariate_logrank_test

test_statistic p -log2(p)
49.90 <0.005 35.99

As in the case of a categorical variable with 2 levels, these results are
similar to the likelihood ratio test from the Cox proportional hazards model.
First, we look at the results for Center.

In [33]: X = MS(['Wait time',
'Failed',
'Center'],
intercept=False).fit_transform(D)

F = coxph().fit(X, 'Wait time', 'Failed')
F.log_likelihood_ratio_test()

Out[33]: null_distribution chi squared
degrees_freedom 2

test_name log-likelihood ratio test

test_statistic p -log2(p)
20.58 <0.005 14.85

Next, we look at the results for Time.
In [34]: X = MS(['Wait time',

'Failed',
'Time'],

intercept=False).fit_transform(D)
F = coxph().fit(X, 'Wait time', 'Failed')
F.log_likelihood_ratio_test()

Out[34]: null_distribution chi squared
degrees_freedom 2

test_name log-likelihood ratio test

test_statistic p -log2(p)
48.12 <0.005 34.71

We find that differences between centers are highly significant, as are
differences between times of day.

Finally, we fit Cox’s proportional hazards model to the data.



498 11. Survival Analysis and Censored Data

In [35]: X = MS(D.columns,
intercept=False).fit_transform(D)

fit_queuing = coxph().fit(
X,

'Wait time',
'Failed')

fit_queuing.summary[['coef', 'se(coef)', 'p']]

Out[35]: coef se(coef) p
covariate
Operators 0.043934 0.007520 5.143677e-09
Center[B] -0.236059 0.058113 4.864734e-05
Center[C] 0.012231 0.057518 8.316083e-01

Time[Even.] 0.268845 0.057797 3.294914e-06
Time[Morn.] -0.148215 0.057334 9.734378e-03

The p-values for Center B and evening time are very small. It is also
clear that the hazard — that is, the instantaneous risk that a call will be
answered — increases with the number of operators. Since we generated
the data ourselves, we know that the true coefficients for Operators, Center
= B, Center = C, Time = Even. and Time = Morn. are 0.04, −0.3, 0, 0.2, and
−0.2, respectively. The coefficient estimates from the fitted Cox model are
fairly accurate.

11.9 Exercises
Conceptual

1. For each example, state whether or not the censoring mechanism is
independent. Justify your answer.

(a) In a study of disease relapse, due to a careless research scientist,
all patients whose phone numbers begin with the number “2”
are lost to follow up.

(b) In a study of longevity, a formatting error causes all patient ages
that exceed 99 years to be lost (i.e. we know that those patients
are more than 99 years old, but we do not know their exact
ages).

(c) Hospital A conducts a study of longevity. However, very sick
patients tend to be transferred to Hospital B, and are lost to
follow up.

(d) In a study of unemployment duration, the people who find work
earlier are less motivated to stay in touch with study investiga-
tors, and therefore are more likely to be lost to follow up.

(e) In a study of pregnancy duration, women who deliver their ba-
bies pre-term are more likely to do so away from their usual
hospital, and thus are more likely to be censored, relative to
women who deliver full-term babies.
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(f) A researcher wishes to model the number of years of education
of the residents of a small town. Residents who enroll in college
out of town are more likely to be lost to follow up, and are
also more likely to attend graduate school, relative to those who
attend college in town.

(g) Researchers conduct a study of disease-free survival (i.e. time
until disease relapse following treatment). Patients who have
not relapsed within five years are considered to be cured, and
thus their survival time is censored at five years.

(h) We wish to model the failure time for some electrical component.
This component can be manufactured in Iowa or in Pittsburgh,
with no difference in quality. The Iowa factory opened five years
ago, and so components manufactured in Iowa are censored at
five years. The Pittsburgh factory opened two years ago, so those
components are censored at two years.

(i) We wish to model the failure time of an electrical component
made in two different factories, one of which opened before the
other. We have reason to believe that the components manufac-
tured in the factory that opened earlier are of higher quality.

2. We conduct a study with n = 4 participants who have just purchased
cell phones, in order to model the time until phone replacement. The
first participant replaces her phone after 1.2 years. The second par-
ticipant still has not replaced her phone at the end of the two-year
study period. The third participant changes her phone number and is
lost to follow up (but has not yet replaced her phone) 1.5 years into
the study. The fourth participant replaces her phone after 0.2 years.
For each of the four participants (i = 1, . . . , 4), answer the following
questions using the notation introduced in Section 11.1:

(a) Is the participant’s cell phone replacement time censored?
(b) Is the value of ci known, and if so, then what is it?
(c) Is the value of ti known, and if so, then what is it?
(d) Is the value of yi known, and if so, then what is it?
(e) Is the value of δi known, and if so, then what is it?

3. For the example in Exercise 2, report the values of K, d1, . . . , dK ,
r1, . . . , rK , and q1, . . . , qK , where this notation was defined in Sec-
tion 11.3.

4. This problem makes use of the Kaplan-Meier survival curve displayed
in Figure 11.9. The raw data that went into plotting this survival
curve is given in Table 11.4. The covariate column of that table is
not needed for this problem.

(a) What is the estimated probability of survival past 50 days?
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Observation (Y ) Censoring Indicator (δ) Covariate (X)
26.5 1 0.1
37.2 1 11
57.3 1 -0.3
90.8 0 2.8
20.2 0 1.8
89.8 0 0.4

TABLE 11.4. Data used in Exercise 4.

(b) Write out an analytical expression for the estimated survival
function. For instance, your answer might be something along
the lines of

Ŝ(t) =






0.8 if t < 31

0.5 if 31 ≤ t < 77

0.22 if 77 ≤ t.

(The previous equation is for illustration only: it is not the cor-
rect answer!)

5. Sketch the survival function given by the equation

Ŝ(t) =






0.8 if t < 31

0.5 if 31 ≤ t < 77

0.22 if 77 ≤ t.

Your answer should look something like Figure 11.9.
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FIGURE 11.9. A Kaplan-Meier survival curve used in Exercise 4.

6. This problem makes use of the data displayed in Figure 11.1. In
completing this problem, you can refer to the observation times as
y1, . . . , y4. The ordering of these observation times can be seen from
Figure 11.1; their exact values are not required.

(a) Report the values of δ1, . . . , δ4, K, d1, . . . , dK , r1, . . . , rK , and
q1, . . . , qK . The relevant notation is defined in Sections 11.1 and
11.3.
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(b) Sketch the Kaplan-Meier survival curve corresponding to this
data set. (You do not need to use any software to do this — you
can sketch it by hand using the results obtained in (a).)

(c) Based on the survival curve estimated in (b), what is the proba-
bility that the event occurs within 200 days? What is the prob-
ability that the event does not occur within 310 days?

(d) Write out an expression for the estimated survival curve from
(b).

7. In this problem, we will derive (11.5) and (11.6), which are needed
for the construction of the log-rank test statistic (11.8). Recall the
notation in Table 11.1.

(a) Assume that there is no difference between the survival functions
of the two groups. Then we can think of q1k as the number of
failures if we draw r1k observations, without replacement, from
a risk set of rk observations that contains a total of qk failures.
Argue that q1k follows a hypergeometric distribution. Write the hyper-

geometric
distribution

parameters of this distribution in terms of r1k, rk, and qk.
(b) Given your previous answer, and the properties of the hyper-

geometric distribution, what are the mean and variance of q1k?
Compare your answer to (11.5) and (11.6).

8. Recall that the survival function S(t), the hazard function h(t), and
the density function f(t) are defined in (11.2), (11.9), and (11.11),
respectively. Furthermore, define F (t) = 1 − S(t). Show that the
following relationships hold:

f(t) = dF (t)/dt

S(t) = exp

(
−
∫ t

0
h(u)du

)
.

9. In this exercise, we will explore the consequences of assuming that
the survival times follow an exponential distribution.

(a) Suppose that a survival time follows an Exp(λ) distribution,
so that its density function is f(t) = λ exp(−λt). Using the
relationships provided in Exercise 8, show that S(t) = exp(−λt).

(b) Now suppose that each of n independent survival times follows
an Exp(λ) distribution. Write out an expression for the likeli-
hood function (11.13).

(c) Show that the maximum likelihood estimator for λ is

λ̂ =
n∑

i=1

δi/
n∑

i=1

yi.

(d) Use your answer to (c) to derive an estimator of the mean sur-
vival time.

Hint: For (d), recall that the mean of an Exp(λ) random variable is
1/λ.
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Applied
10. This exercise focuses on the brain tumor data, which is included in

the ISLP library.

(a) Plot the Kaplan-Meier survival curve with ±1 standard error
bands, using the KaplanMeierFitter() estimator in the lifelines
package.

(b) Draw a bootstrap sample of size n = 88 from the pairs (yi, δi),
and compute the resulting Kaplan-Meier survival curve. Repeat
this process B = 200 times. Use the results to obtain an estimate
of the standard error of the Kaplan-Meier survival curve at each
timepoint. Compare this to the standard errors obtained in (a).

(c) Fit a Cox proportional hazards model that uses all of the pre-
dictors to predict survival. Summarize the main findings.

(d) Stratify the data by the value of ki. (Since only one observation
has ki==40, you can group that observation together with the ob-
servations that have ki==60.) Plot Kaplan-Meier survival curves
for each of the five strata, adjusted for the other predictors.

11. This exercise makes use of the data in Table 11.4.

(a) Create two groups of observations. In Group 1, X < 2, whereas
in Group 2, X ≥ 2. Plot the Kaplan-Meier survival curves corre-
sponding to the two groups. Be sure to label the curves so that
it is clear which curve corresponds to which group. By eye, does
there appear to be a difference between the two groups’ survival
curves?

(b) Fit Cox’s proportional hazards model, using the group indicator
as a covariate. What is the estimated coefficient? Write a sen-
tence providing the interpretation of this coefficient, in terms
of the hazard or the instantaneous probability of the event. Is
there evidence that the true coefficient value is non-zero?

(c) Recall from Section 11.5.2 that in the case of a single binary
covariate, the log-rank test statistic should be identical to the
score statistic for the Cox model. Conduct a log-rank test to de-
termine whether there is a difference between the survival curves
for the two groups. How does the p-value for the log-rank test
statistic compare to the p-value for the score statistic for the
Cox model from (b)?


