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Moving Beyond Linearity

So far in this book, we have mostly focused on linear models. Linear models
are relatively simple to describe and implement, and have advantages over
other approaches in terms of interpretation and inference. However, stan-
dard linear regression can have significant limitations in terms of predic-
tive power. This is because the linearity assumption is almost always an
approximation, and sometimes a poor one. In Chapter 6 we see that we can
improve upon least squares using ridge regression, the lasso, principal com-
ponents regression, and other techniques. In that setting, the improvement
is obtained by reducing the complexity of the linear model, and hence the
variance of the estimates. But we are still using a linear model, which can
only be improved so far! In this chapter we relax the linearity assumption
while still attempting to maintain as much interpretability as possible. We
do this by examining very simple extensions of linear models like polyno-
mial regression and step functions, as well as more sophisticated approaches
such as splines, local regression, and generalized additive models.

e Polynomial regression extends the linear model by adding extra pre-
dictors, obtained by raising each of the original predictors to a power.
For example, a cubic regression uses three variables, X, X2, and X3,
as predictors. This approach provides a simple way to provide a non-
linear fit to data.

e Step functions cut the range of a variable into K distinct regions in
order to produce a qualitative variable. This has the effect of fitting
a piecewise constant function.

e Regression splines are more flexible than polynomials and step func-
tions, and in fact are an extension of the two. They involve dividing
the range of X into K distinct regions. Within each region, a poly-
nomial function is fit to the data. However, these polynomials are
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constrained so that they join smoothly at the region boundaries, or
knots. Provided that the interval is divided into enough regions, this
can produce an extremely flexible fit.

e Smoothing splines are similar to regression splines, but arise in a
slightly different situation. Smoothing splines result from minimizing
a residual sum of squares criterion subject to a smoothness penalty.

e Local regression is similar to splines, but differs in an important way.
The regions are allowed to overlap, and indeed they do so in a very
smooth way.

o Generalized additive models allow us to extend the methods above to
deal with multiple predictors.

In Sections 7.1-7.6, we present a number of approaches for modeling the
relationship between a response Y and a single predictor X in a flexible
way. In Section 7.7, we show that these approaches can be seamlessly in-
tegrated in order to model a response Y as a function of several predictors
X1, Xp.

7.1 Polynomial Regression

Historically, the standard way to extend linear regression to settings in
which the relationship between the predictors and the response is non-
linear has been to replace the standard linear model

yi = Bo + Prxi + €&
with a polynomial function
Yi = Bo + Brxi + Boxd + Baxi + - + Baxl + €, (7.1)

where ¢; is the error term. This approach is known as polynomial regression,
and in fact we saw an example of this method in Section 3.3.2. For large
enough degree d, a polynomial regression allows us to produce an extremely
non-linear curve. Notice that the coefficients in (7.1) can be easily estimated
using least squares linear regression because this is just a standard linear
model with predictors x;, 22, x3,. .., 2¢. Generally speaking, it is unusual
to use d greater than 3 or 4 because for large values of d, the polynomial
curve can become overly flexible and can take on some very strange shapes.
This is especially true near the boundary of the X variable.

The left-hand panel in Figure 7.1 is a plot of wage against age for the
Wage data set, which contains income and demographic information for
males who reside in the central Atlantic region of the United States. We
see the results of fitting a degree-4 polynomial using least squares (solid
blue curve). Even though this is a linear regression model like any other,
the individual coefficients are not of particular interest. Instead, we look at
the entire fitted function across a grid of 63 values for age from 18 to 80 in
order to understand the relationship between age and wage.

polynomial
regression
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FIGURE 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial
of wage (in thousands of dollars) as a function of age, fit by least squares. The
dashed curves indicate an estimated 95 % confidence interval. Right: We model the
binary event wage>250 using logistic regression, again with a degree-4 polynomial.
The fitted posterior probability of wage exceeding $250,000 is shown in blue, along
with an estimated 95 % confidence interval.

In Figure 7.1, a pair of dashed curves accompanies the fit; these are (2x)
standard error curves. Let’s see how these arise. Suppose we have computed
the fit at a particular value of age, xg:

fzo) = Bo + Bizo + Boxk + Baxl + Paz. (7.2)

What is the variance of the fit, i.e. Varf(x0)? Least squares returns variance
estimates for each of the fitted coefficients Bj, as well as the covariances
between pairs of coefficient estimates. We can use these to compute the
estimated variance of f(xg).! The estimated pointwise standard error of
f (xg) is the square-root of this variance. This computation is repeated
at each reference point xg, and we plot the fitted curve, as well as twice
the standard error on either side of the fitted curve. We plot twice the
standard error because, for normally distributed error terms, this quantity
corresponds to an approximate 95 % confidence interval.

It seems like the wages in Figure 7.1 are from two distinct populations:
there appears to be a high earners group earning more than $250,000 per
annum, as well as a low earners group. We can treat wage as a binary
variable by splitting it into these two groups. Logistic regression can then
be used to predict this binary response, using polynomial functions of age

11f € is the 5 x 5 covariance matrix of the Bj, and if Zg = (1,:1:0,:1:8,3:8,903), then
Var[f(zo)] = 3 Cto.



292 7. Moving Beyond Linearity

as predictors. In other words, we fit the model

, 24 d
Pr(y; > 250|z;) = exp(Bo + Prei + Boxf 4 -+ - + Baxf)

 1+exp(Bo+ Bimi + Boa? + -+ + Baxd) (7.3)

The result is shown in the right-hand panel of Figure 7.1. The gray marks
on the top and bottom of the panel indicate the ages of the high earners
and the low earners. The solid blue curve indicates the fitted probabilities
of being a high earner, as a function of age. The estimated 95 % confidence
interval is shown as well. We see that here the confidence intervals are fairly
wide, especially on the right-hand side. Although the sample size for this
data set is substantial (n = 3,000), there are only 79 high earners, which
results in a high variance in the estimated coefficients and consequently
wide confidence intervals.

7.2 Step Functions

Using polynomial functions of the features as predictors in a linear model
imposes a global structure on the non-linear function of X. We can instead
use step functions in order to avoid imposing such a global structure. Here
we break the range of X into bins, and fit a different constant in each bin.
This amounts to converting a continuous variable into an ordered categorical
variable.

In greater detail, we create cutpoints c1, c3,...,cx in the range of X,
and then construct K + 1 new variables
CO(X) = I(X<Cl),
C1(X) = I(c; <X <c¢a),
Cy(X) = I(cz £ X <¢3),
. (7.4)
Cr-1(X) = I(ex-1 <X <ck),

Ck(X)

I(CK S X),

where I(-) is an indicator function that returns a 1 if the condition is true,
and returns a 0 otherwise. For example, I(cx < X) equals 1 if cx < X, and
equals 0 otherwise. These are sometimes called dummy variables. Notice
that for any value of X, Co(X) +C1(X) + -+ Cg(X) = 1, since X must
be in exactly one of the K + 1 intervals. We then use least squares to fit a
linear model using C;(X), Co(X),...,Cx(X) as predictors®:

yi = Bo + P1C1(x;) + B2C2(x;) + -+ + B Cr (x;) + €. (7.5)

For a given value of X, at most one of Cy,Cs,...,Ckx can be non-zero.
Note that when X < ¢;, all of the predictors in (7.5) are zero, so By can

2We exclude Co(X) as a predictor in (7.5) because it is redundant with the intercept.
This is similar to the fact that we need only two dummy variables to code a qualitative
variable with three levels, provided that the model will contain an intercept. The decision
to exclude Co(X) instead of some other Ci(X) in (7.5) is arbitrary. Alternatively, we
could include Co(X), C1(X),...,Ck(X), and exclude the intercept.

step
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FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from
a least squares regression of wage (in thousands of dollars) using step functions
of age. The dashed curves indicate an estimated 95 % confidence interval. Right:
We model the binary event wage>250 using logistic regression, again using step
functions of age. The fitted posterior probability of wage exceeding $250,000 is
shown, along with an estimated 95 % confidence interval.

be interpreted as the mean value of Y for X < ¢;. By comparison, (7.5)
predicts a response of 3o+ /3; for c¢; < X < ¢;11,s0 ; represents the average
increase in the response for X in ¢; < X < ¢j4 relative to X < c;.

An example of fitting step functions to the Wage data from Figure 7.1 is
shown in the left-hand panel of Figure 7.2. We also fit the logistic regression
model

exp(Bo + B1C1 () + - + B Ok (7))

Pr(y; > 250]z;) = 1 +exp(Bo + S1C1(2:) + -+ - + B Ck (21)) o

in order to predict the probability that an individual is a high earner on the
basis of age. The right-hand panel of Figure 7.2 displays the fitted posterior
probabilities obtained using this approach.

Unfortunately, unless there are natural breakpoints in the predictors,
piecewise-constant functions can miss the action. For example, in the left-
hand panel of Figure 7.2, the first bin clearly misses the increasing trend
of wage with age. Nevertheless, step function approaches are very popular
in biostatistics and epidemiology, among other disciplines. For example,
5-year age groups are often used to define the bins.

7.3 Basis Functions

Polynomial and piecewise-constant regression models are in fact special
cases of a basis function approach. The idea is to have at hand a fam-

basis
function
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ily of functions or transformations that can be applied to a variable X:
b1(X),b2(X),...,bg(X). Instead of fitting a linear model in X, we fit the
model

Yi = Bo + Brbi(x;) + Paba(xi) + P3bs(xi) + -+ + Brbr(xi) + €. (7.7)

Note that the basis functions by (-),ba(-),...,bx(-) are fixed and known.
(In other words, we choose the functions ahead of time.) For polynomial
regression, the basis functions are b;(z;) = x7, and for piecewise constant
functions they are b;(z;) = I(c; < x; < ¢j41). We can think of (7.7) as
a standard linear model with predictors by (z;), ba(x;), ..., bk (z;). Hence,
we can use least squares to estimate the unknown regression coefficients
in (7.7). Importantly, this means that all of the inference tools for linear
models that are discussed in Chapter 3, such as standard errors for the
coefficient estimates and F-statistics for the model’s overall significance,
are available in this setting.

Thus far we have considered the use of polynomial functions and piece-
wise constant functions for our basis functions; however, many alternatives
are possible. For instance, we can use wavelets or Fourier series to construct
basis functions. In the next section, we investigate a very common choice
for a basis function: regression splines.

7.4 Regression Splines

Now we discuss a flexible class of basis functions that extends upon the
polynomial regression and piecewise constant regression approaches that
we have just seen.

7.4.1 Piecewise Polynomials

Instead of fitting a high-degree polynomial over the entire range of X, piece-
wise polynomial regression involves fitting separate low-degree polynomials
over different regions of X. For example, a piecewise cubic polynomial
works by fitting a cubic regression model of the form

yi = Bo + 1% + Box? + B33 + €, (7.8)

where the coefficients By, 81, B2, and B3 differ in different parts of the range
of X. The points where the coefficients change are called knots.

For example, a piecewise cubic with no knots is just a standard cubic
polynomial, as in (7.1) with d = 3. A piecewise cubic polynomial with a
single knot at a point ¢ takes the form

_ JBor+ Bumi + Baraf + Buai +e ifw<c
' Boz + Brazi + Post} + Paoxl + ¢ if x; > c.
In other words, we fit two different polynomial functions to the data, one

on the subset of the observations with x; < ¢, and one on the subset of
the observations with z; > c. The first polynomial function has coefficients

regression
spline

piecewise
polynomial

regression

knot
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FIGURE 7.3. Various piecewise polynomials are fit to a subset of the Wage
data, with a knot at age=50. Top Left: The cubic polynomials are unconstrained.
Top Right: The cubic polynomials are constrained to be continuous at age=50.
Bottom Left: The cubic polynomials are constrained to be continuous, and to have
continuous first and second derivatives. Bottom Right: A linear spline is shown,
which is constrained to be continuous.

Bo1, P11, P21, and B31, and the second has coefficients Bgs, 812, S22, and [3s.
Each of these polynomial functions can be fit using least squares applied
to simple functions of the original predictor.

Using more knots leads to a more flexible piecewise polynomial. In gen-
eral, if we place K different knots throughout the range of X, then we
will end up fitting K + 1 different cubic polynomials. Note that we do not
need to use a cubic polynomial. For example, we can instead fit piecewise
linear functions. In fact, our piecewise constant functions of Section 7.2 are
piecewise polynomials of degree 0!

The top left panel of Figure 7.3 shows a piecewise cubic polynomial fit to
a subset of the Wage data, with a single knot at age=50. We immediately see
a problem: the function is discontinuous and looks ridiculous! Since each
polynomial has four parameters, we are using a total of eight degrees of
freedom in fitting this piecewise polynomial model.

degrees of
freedom
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7.4.2  Constraints and Splines

The top left panel of Figure 7.3 looks wrong because the fitted curve is just
too flexible. To remedy this problem, we can fit a piecewise polynomial
under the constraint that the fitted curve must be continuous. In other
words, there cannot be a jump when age=50. The top right plot in Figure 7.3
shows the resulting fit. This looks better than the top left plot, but the V-
shaped join looks unnatural.

In the lower left plot, we have added two additional constraints: now both
the first and second derivatives of the piecewise polynomials are continuous
at age=50. In other words, we are requiring that the piecewise polynomial
be not only continuous when age=50, but also very smooth. Each constraint
that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, by reducing the complexity of the resulting piecewise
polynomial fit. So in the top left plot, we are using eight degrees of free-
dom, but in the bottom left plot we imposed three constraints (continuity,
continuity of the first derivative, and continuity of the second derivative)
and so are left with five degrees of freedom. The curve in the bottom left
plot is called a cubic spline.® In general, a cubic spline with K knots uses
a total of 4 + K degrees of freedom.

In Figure 7.3, the lower right plot is a linear spline, which is continuous
at age=50. The general definition of a degree-d spline is that it is a piecewise
degree-d polynomial, with continuity in derivatives up to degree d — 1 at
each knot. Therefore, a linear spline is obtained by fitting a line in each
region of the predictor space defined by the knots, requiring continuity at
each knot.

In Figure 7.3, there is a single knot at age=50. Of course, we could add
more knots, and impose continuity at each.

7.4.8 The Spline Basis Representation

The regression splines that we just saw in the previous section may have
seemed somewhat complex: how can we fit a piecewise degree-d polynomial
under the constraint that it (and possibly its first d — 1 derivatives) be
continuous? It turns out that we can use the basis model (7.7) to represent
a regression spline. A cubic spline with K knots can be modeled as

Yi = Bo + Bibi(a;) + Paba(x;) + - - + Brysbrts(xs) + €&, (7.9)

for an appropriate choice of basis functions by, ba,...,bx 3. The model
(7.9) can then be fit using least squares.

Just as there were several ways to represent polynomials, there are also
many equivalent ways to represent cubic splines using different choices of
basis functions in (7.9). The most direct way to represent a cubic spline
using (7.9) is to start off with a basis for a cubic polynomial—namely,

z,22, and 23—and then add one truncated power basis function per knot.

3Cubic splines are popular because most human eyes cannot detect the discontinuity
at the knots.

derivative

cubic spline

linear spline

truncated
power basis
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FIGURE 7.4. A cubic spline and a natural cubic spline, with three knots, fit to
a subset of the Wage data. The dashed lines denote the knot locations.

A truncated power basis function is defined as

_ s _ [ (@=¢° ifz>¢
hiz,§) = (z = &) = { 0 otherwise, (7.10)
where ¢ is the knot. One can show that adding a term of the form S4h(x, §)
to the model (7.8) for a cubic polynomial will lead to a discontinuity in
only the third derivative at &; the function will remain continuous, with
continuous first and second derivatives, at each of the knots.

In other words, in order to fit a cubic spline to a data set with K knots, we
perform least squares regression with an intercept and 3 + K predictors, of
the form X, X2 X3 h(X &), (X, &), ..., h(X,Ek), where &, ..., are
the knots. This amounts to estimating a total of K + 4 regression coeffi-
cients; for this reason, fitting a cubic spline with K knots uses K +4 degrees
of freedom.

Unfortunately, splines can have high variance at the outer range of the
predictors—that is, when X takes on either a very small or very large
value. Figure 7.4 shows a fit to the Wage data with three knots. We see that
the confidence bands in the boundary region appear fairly wild. A natu-
ral spline is a regression spline with additional boundary constraints: the
function is required to be linear at the boundary (in the region where X is
smaller than the smallest knot, or larger than the largest knot). This addi-
tional constraint means that natural splines generally produce more stable
estimates at the boundaries. In Figure 7.4, a natural cubic spline is also
displayed as a red line. Note that the corresponding confidence intervals
are narrower.

7.4.4  Choosing the Number and Locations of the Knots

When we fit a spline, where should we place the knots? The regression
spline is most flexible in regions that contain a lot of knots, because in
those regions the polynomial coefficients can change rapidly. Hence, one

natural
spline
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FIGURE 7.5. A natural cubic spline function with four degrees of freedom is
fit to the Wage data. Left: A spline is fit to wage (in thousands of dollars) as
a function of age. Right: Logistic regression is used to model the binary event
wage>250 as a function of age. The fitted posterior probability of wage exceeding
$250,000 is shown. The dashed lines denote the knot locations.

option is to place more knots in places where we feel the function might
vary most rapidly, and to place fewer knots where it seems more stable.
While this option can work well, in practice it is common to place knots in
a uniform fashion. One way to do this is to specify the desired degrees of
freedom, and then have the software automatically place the corresponding
number of knots at uniform quantiles of the data.

Figure 7.5 shows an example on the Wage data. As in Figure 7.4, we
have fit a natural cubic spline with three knots, except this time the knot
locations were chosen automatically as the 25th, 50th, and 75th percentiles
of age. This was specified by requesting four degrees of freedom. The ar-
gument by which four degrees of freedom leads to three interior knots is
somewhat technical.*

How many knots should we use, or equivalently how many degrees of
freedom should our spline contain? One option is to try out different num-
bers of knots and see which produces the best looking curve. A somewhat
more objective approach is to use cross-validation, as discussed in Chap-
ters 5 and 6. With this method, we remove a portion of the data (say 10 %),
fit a spline with a certain number of knots to the remaining data, and then
use the spline to make predictions for the held-out portion. We repeat this
process multiple times until each observation has been left out once, and

4There are actually five knots, including the two boundary knots. A cubic spline with
five knots has nine degrees of freedom. But natural cubic splines have two additional
natural constraints at each boundary to enforce linearity, resulting in 9 — 4 = 5 degrees
of freedom. Since this includes a constant, which is absorbed in the intercept, we count
it as four degrees of freedom.
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FIGURE 7.6. Ten-fold cross-validated mean squared errors for selecting the
degrees of freedom when fitting splines to the Wage data. The response is wage
and the predictor age. Left: A natural cubic spline. Right: A cubic spline.

then compute the overall cross-validated RSS. This procedure can be re-
peated for different numbers of knots K. Then the value of K giving the
smallest RSS is chosen.

Figure 7.6 shows ten-fold cross-validated mean squared errors for splines
with various degrees of freedom fit to the Wage data. The left-hand panel
corresponds to a natural cubic spline and the right-hand panel to a cu-
bic spline. The two methods produce almost identical results, with clear
evidence that a one-degree fit (a linear regression) is not adequate. Both
curves flatten out quickly, and it seems that three degrees of freedom for
the natural spline and four degrees of freedom for the cubic spline are quite
adequate.

In Section 7.7 we fit additive spline models simultaneously on several
variables at a time. This could potentially require the selection of degrees
of freedom for each variable. In cases like this we typically adopt a more
pragmatic approach and set the degrees of freedom to a fixed number, say
four, for all terms.

7.4.5 Comparison to Polynomial Regression

Figure 7.7 compares a natural cubic spline with 15 degrees of freedom to a
degree-15 polynomial on the Wage data set. The extra flexibility in the poly-
nomial produces undesirable results at the boundaries, while the natural
cubic spline still provides a reasonable fit to the data. Regression splines
often give superior results to polynomial regression. This is because unlike
polynomials, which must use a high degree (exponent in the highest mono-
mial term, e.g. X'%) to produce flexible fits, splines introduce flexibility
by increasing the number of knots but keeping the degree fixed. Generally,
this approach produces more stable estimates. Splines also allow us to place
more knots, and hence flexibility, over regions where the function f seems
to be changing rapidly, and fewer knots where f appears more stable.
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FIGURE 7.7. On the Wage data set, a matural cubic spline with 15 degrees
of freedom is compared to a degree-15 polynomial. Polynomials can show wild
behavior, especially near the tails.

7.5 Smoothing Splines

In the last section we discussed regression splines, which we create by spec-
ifying a set of knots, producing a sequence of basis functions, and then
using least squares to estimate the spline coefficients. We now introduce a
somewhat different approach that also produces a spline.

7.5.1  An QOwverview of Smoothing Splines

In fitting a smooth curve to a set of data, what we really want to do is
find some function, say g(z), that fits the observed data well: that is, we
want RSS = 3" | (y; — g(;))? to be small. However, there is a problem
with this approach. If we don’t put any constraints on g(x;), then we can
always make RSS zero simply by choosing g such that it interpolates all
of the y;. Such a function would woefully overfit the data—it would be far
too flexible. What we really want is a function g that makes RSS small,
but that is also smooth.

How might we ensure that g is smooth? There are a number of ways to
do this. A natural approach is to find the function g that minimizes

n

Z(yi —g(z)* + )\/g”(t)zdt (7.11)

i=1

where A is a nonnegative tuning parameter. The function g that minimizes
(7.11) is known as a smoothing spline.

What does (7.11) mean? Equation 7.11 takes the “Loss+Penalty” for-
mulation that we encounter in the context of ridge regression and the lasso
in Chapter 6. The term Y., (y; — g(z;))? is a loss function that encour-
ages g to fit the data well, and the term X [ ¢”(¢)%dt is a penalty term
that penalizes the variability in g. The notation ¢”(t) indicates the second
derivative of the function g. The first derivative ¢'(¢) measures the slope

smoothing
spline

loss function
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of a function at ¢, and the second derivative corresponds to the amount by
which the slope is changing. Hence, broadly speaking, the second derivative
of a function is a measure of its roughness: it is large in absolute value if
g(t) is very wiggly near t, and it is close to zero otherwise. (The second
derivative of a straight line is zero; note that a line is perfectly smooth.)
The [ notation is an integral, which we can think of as a summation over
the range of ¢. In other words, [ ¢”(t)?dt is simply a measure of the total
change in the function ¢’(t), over its entire range. If ¢ is very smooth, then
g'(t) will be close to constant and [ ¢”(t)%dt will take on a small value.
Conversely, if g is jumpy and variable then ¢'(t) will vary significantly and
J ¢"(t)?dt will take on a large value. Therefore, in (7.11), A [ ¢"(t)*dt en-
courages g to be smooth. The larger the value of A, the smoother g will be.

When A = 0, then the penalty term in (7.11) has no effect, and so the
function g will be very jumpy and will exactly interpolate the training
observations. When A — oo, g will be perfectly smooth—it will just be
a straight line that passes as closely as possible to the training points.
In fact, in this case, g will be the linear least squares line, since the loss
function in (7.11) amounts to minimizing the residual sum of squares. For
an intermediate value of A\, g will approximate the training observations
but will be somewhat smooth. We see that A controls the bias-variance
trade-off of the smoothing spline.

The function g(z) that minimizes (7.11) can be shown to have some spe-
cial properties: it is a piecewise cubic polynomial with knots at the unique
values of x1,...,x,, and continuous first and second derivatives at each
knot. Furthermore, it is linear in the region outside of the extreme knots.
In other words, the function g(x) that minimizes (7.11) is a natural cubic
spline with knots at x1,...,x,! However, it is not the same natural cubic
spline that one would get if one applied the basis function approach de-
scribed in Section 7.4.3 with knots at xq,...,x,—rather, it is a shrunken
version of such a natural cubic spline, where the value of the tuning pa-
rameter A in (7.11) controls the level of shrinkage.

7.5.2  Choosing the Smoothing Parameter A\

We have seen that a smoothing spline is simply a natural cubic spline
with knots at every unique value of x;. It might seem that a smoothing
spline will have far too many degrees of freedom, since a knot at each data
point allows a great deal of flexibility. But the tuning parameter A controls
the roughness of the smoothing spline, and hence the effective degrees of
freedom. 1t is possible to show that as A increases from 0 to oo, the effective
degrees of freedom, which we write df), decrease from n to 2.

In the context of smoothing splines, why do we discuss effective degrees
of freedom instead of degrees of freedom? Usually degrees of freedom refer
to the number of free parameters, such as the number of coefficients fit in a
polynomial or cubic spline. Although a smoothing spline has n parameters
and hence n nominal degrees of freedom, these n parameters are heavily
constrained or shrunk down. Hence df) is a measure of the flexibility of the
smoothing spline—the higher it is, the more flexible (and the lower-bias but
higher-variance) the smoothing spline. The definition of effective degrees of

effective
degrees of
freedom
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freedom is somewhat technical. We can write

& =Sy, (7.12)

where g, is the solution to (7.11) for a particular choice of A—that is, it
is an n-vector containing the fitted values of the smoothing spline at the
training points x1, ..., Z,. Equation 7.12 indicates that the vector of fitted
values when applying a smoothing spline to the data can be written as a
n x n matrix Sy (for which there is a formula) times the response vector
y. Then the effective degrees of freedom is defined to be

n

dfy = Z{S)\}ii, (7.13)

i=1

the sum of the diagonal elements of the matrix Sj.

In fitting a smoothing spline, we do not need to select the number or
location of the knots—there will be a knot at each training observation,
Z1,...,Z,. Instead, we have another problem: we need to choose the value
of A. It should come as no surprise that one possible solution to this problem
is cross-validation. In other words, we can find the value of A that makes
the cross-validated RSS as small as possible. It turns out that the leave-
one-out cross-validation error (LOOCYV) can be computed very efficiently
for smoothing splines, with essentially the same cost as computing a single
fit, using the following formula:

n n

RSSe,(A) = D (i — 5" (@) = > [1_{SA}”]2

i=1 i=1

The notation gf\fi)(xi) indicates the fitted value for this smoothing spline

evaluated at x;, where the fit uses all of the training observations except
for the ith observation (x;,y;). In contrast, gy (xz;) indicates the smoothing
spline function fit to all of the training observations and evaluated at z;.
This remarkable formula says that we can compute each of these leave-
one-out fits using only g, the original fit to all of the data!> We have
a very similar formula (5.2) on page 205 in Chapter 5 for least squares
linear regression. Using (5.2), we can very quickly perform LOOCV for
the regression splines discussed earlier in this chapter, as well as for least
squares regression using arbitrary basis functions.

Figure 7.8 shows the results from fitting a smoothing spline to the Wage
data. The red curve indicates the fit obtained from pre-specifying that we
would like a smoothing spline with 16 effective degrees of freedom. The blue
curve is the smoothing spline obtained when A is chosen using LOOCYV; in
this case, the value of A\ chosen results in 6.8 effective degrees of freedom
(computed using (7.13)). For this data, there is little discernible difference
between the two smoothing splines, beyond the fact that the one with 16
degrees of freedom seems slightly wigglier. Since there is little difference
between the two fits, the smoothing spline fit with 6.8 degrees of freedom

5The exact formulas for computing §(x;) and Sy are very technical; however, efficient
algorithms are available for computing these quantities.
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FIGURE 7.8. Smoothing spline fits to the Wage data. The red curve results
from specifying 16 effective degrees of freedom. For the blue curve, X was found
automatically by leave-one-out cross-validation, which resulted in 6.8 effective
degrees of freedom.

is preferable, since in general simpler models are better unless the data
provides evidence in support of a more complex model.

7.6 Local Regression

Local regression is a different approach for fitting flexible non-linear func-
tions, which involves computing the fit at a target point xq using only the
nearby training observations. Figure 7.9 illustrates the idea on some simu-
lated data, with one target point near 0.4, and another near the boundary
at 0.05. In this figure the blue line represents the function f(x) from which
the data were generated, and the light orange line corresponds to the local
regression estimate f (z). Local regression is described in Algorithm 7.1.

Note that in Step 3 of Algorithm 7.1, the weights K;q will differ for each
value of xg. In other words, in order to obtain the local regression fit at a
new point, we need to fit a new weighted least squares regression model by
minimizing (7.14) for a new set of weights. Local regression is sometimes
referred to as a memory-based procedure, because like nearest-neighbors, we
need all the training data each time we wish to compute a prediction. We
will avoid getting into the technical details of local regression here—there
are books written on the topic.

In order to perform local regression, there are a number of choices to
be made, such as how to define the weighting function K, and whether
to fit a linear, constant, or quadratic regression in Step 3. (Equation 7.14
corresponds to a linear regression.) While all of these choices make some
difference, the most important choice is the span s, which is the proportion
of points used to compute the local regression at x(, as defined in Step 1
above. The span plays a role like that of the tuning parameter A in smooth-

local
regression
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FIGURE 7.9. Local regression illustrated on some simulated data, where the
blue curve represents f(x) from which the data were generated, and the light
orange curve corresponds to the local regression estimate f(ac) The orange colored
points are local to the target point xo, represented by the orange vertical line. The
yellow bell-shape superimposed on the plot indicates weights assigned to each
point, decreasing to zero with distance from the target point. The fit f(;r:o) at xo
is obtained by fitting a weighted linear regression (orange line segment), and using
the fitted value at zo (orange solid dot) as the estimate f(zo).

ing splines: it controls the flexibility of the non-linear fit. The smaller the
value of s, the more local and wiggly will be our fit; alternatively, a very
large value of s will lead to a global fit to the data using all of the train-
ing observations. We can again use cross-validation to choose s, or we can
specify it directly. Figure 7.10 displays local linear regression fits on the
Wage data, using two values of s: 0.7 and 0.2. As expected, the fit obtained
using s = 0.7 is smoother than that obtained using s = 0.2.

The idea of local regression can be generalized in many different ways.
In a setting with multiple features X, X», ..., X,, one very useful general-
ization involves fitting a multiple linear regression model that is global in
some variables, but local in another, such as time. Such varying coefficient
models are a useful way of adapting a model to the most recently gathered
data. Local regression also generalizes very naturally when we want to fit
models that are local in a pair of variables X; and X5, rather than one.
We can simply use two-dimensional neighborhoods, and fit bivariate linear
regression models using the observations that are near each target point
in two-dimensional space. Theoretically the same approach can be imple-
mented in higher dimensions, using linear regressions fit to p-dimensional
neighborhoods. However, local regression can perform poorly if p is much
larger than about 3 or 4 because there will generally be very few training
observations close to xg. Nearest-neighbors regression, discussed in Chap-
ter 3, suffers from a similar problem in high dimensions.

varying
coefficient
model
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Algorithm 7.1 Local Regression At X = xg

1. Gather the fraction s = k/n of training points whose x; are closest
to xg.

2. Assign a weight K;o = K(x;,¢) to each point in this neighborhood,
so that the point furthest from xy has weight zero, and the closest
has the highest weight. All but these k nearest neighbors get weight
ZEro.

3. Fit a weighted least squares regression of the y; on the z; using the
aforementioned weights, by finding 50 and ﬁl that minimize

> Kio(yi — Bo — prmi). (7.14)
i=1

4. The fitted value at zq is given by f(xo) = o + Bro.

Local Linear Regression
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FIGURE 7.10. Local linear fits to the Wage data. The span specifies the fraction
of the data used to compute the fit at each target point.

7.7 Generalized Additive Models

In Sections 7.1-7.6, we present a number of approaches for flexibly predict-
ing a response Y on the basis of a single predictor X. These approaches can
be seen as extensions of simple linear regression. Here we explore the prob-
lem of flexibly predicting Y on the basis of several predictors, Xi,..., X,.
This amounts to an extension of multiple linear regression.

Generalized additive models (GAMs) provide a general framework for
extending a standard linear model by allowing non-linear functions of each
of the variables, while maintaining additivity. Just like linear models, GAMs
can be applied with both quantitative and qualitative responses. We first

generalized
additive
model
additivity
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FIGURE 7.11. For the Wage data, plots of the relationship between each feature
and the response, wage, in the fitted model (7.16). Each plot displays the fitted
function and pointwise standard errors. The first two functions are natural splines
in year and age, with four and five degrees of freedom, respectively. The third
function is a step function, fit to the qualitative variable education.

examine GAMs for a quantitative response in Section 7.7.1, and then for a
qualitative response in Section 7.7.2.

7.7.1 GAMs for Regression Problems
A natural way to extend the multiple linear regression model

Yi = Bo + Brxin + Bazio + - - + BpTip + €

in order to allow for non-linear relationships between each feature and the
response is to replace each linear component 5;x;; with a (smooth) non-
linear function f;(z;;). We would then write the model as

p
yi = Bo+ Y [filwy) +e

=1
= Bo+ filwi) + fo(miz) + - + fp(xip) + €. (7.15)

This is an example of a GAM. It is called an additive model because we
calculate a separate f; for each X, and then add together all of their
contributions.

In Sections 7.1-7.6, we discuss many methods for fitting functions to a
single variable. The beauty of GAMs is that we can use these methods
as building blocks for fitting an additive model. In fact, for most of the
methods that we have seen so far in this chapter, this can be done fairly
trivially. Take, for example, natural splines, and consider the task of fitting
the model

wage = By + fi(year) + fa(age) + fs(education) + € (7.16)

on the Wage data. Here year and age are quantitative variables, while the
variable education is qualitative with five levels: <HS, HS, <Col1, Coll, >Coll,
referring to the amount of high school or college education that an individ-
ual has completed. We fit the first two functions using natural splines. We
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FIGURE 7.12. Details are as in Figure 7.11, but now fi1 and fo are smoothing
splines with four and five degrees of freedom, respectively.

fit the third function using a separate constant for each level, via the usual
dummy variable approach of Section 3.3.1.

Figure 7.11 shows the results of fitting the model (7.16) using least
squares. This is easy to do, since as discussed in Section 7.4, natural splines
can be constructed using an appropriately chosen set of basis functions.
Hence the entire model is just a big regression onto spline basis variables
and dummy variables, all packed into one big regression matrix.

Figure 7.11 can be easily interpreted. The left-hand panel indicates that
holding age and education fixed, wage tends to increase slightly with year;
this may be due to inflation. The center panel indicates that holding
education and year fixed, wage tends to be highest for intermediate val-
ues of age, and lowest for the very young and very old. The right-hand
panel indicates that holding year and age fixed, wage tends to increase
with education: the more educated a person is, the higher their salary, on
average. All of these findings are intuitive.

Figure 7.12 shows a similar triple of plots, but this time f; and fo are
smoothing splines with four and five degrees of freedom, respectively. Fit-
ting a GAM with a smoothing spline is not quite as simple as fitting a GAM
with a natural spline, since in the case of smoothing splines, least squares
cannot be used. However, standard software such as the Python package
pygam can be used to fit GAMs using smoothing splines, via an approach
known as backfitting. This method fits a model involving multiple predic-
tors by repeatedly updating the fit for each predictor in turn, holding the
others fixed. The beauty of this approach is that each time we update a
function, we simply apply the fitting method for that variable to a partial
residual.’

The fitted functions in Figures 7.11 and 7.12 look rather similar. In most
situations, the differences in the GAMs obtained using smoothing splines
versus natural splines are small.

6 A partial residual for X3, for example, has the form r; = y; — f1(zs1) — fo(zi2). If we
know f1 and fa, then we can fit f3 by treating this residual as a response in a non-linear
regression on X3.

pygam
backfitting
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We do not have to use splines as the building blocks for GAMs: we can
just as well use local regression, polynomial regression, or any combination
of the approaches seen earlier in this chapter in order to create a GAM.
GAMs are investigated in further detail in the lab at the end of this chapter.

Pros and Cons of GAMs

Before we move on, let us summarize the advantages and limitations of a
GAM.

GAMs allow us to fit a non-linear f; to each Xj, so that we can
automatically model non-linear relationships that standard linear re-
gression will miss. This means that we do not need to manually try
out many different transformations on each variable individually.

The non-linear fits can potentially make more accurate predictions
for the response Y.

Because the model is additive, we can examine the effect of each X
on Y individually while holding all of the other variables fixed.

The smoothness of the function f; for the variable X; can be sum-
marized via degrees of freedom.

The main limitation of GAMs is that the model is restricted to be
additive. With many variables, important interactions can be missed.
However, as with linear regression, we can manually add interaction
terms to the GAM model by including additional predictors of the
form X; x Xj. In addition we can add low-dimensional interaction
functions of the form f;;(X;, Xs) into the model; such terms can
be fit using two-dimensional smoothers such as local regression, or
two-dimensional splines (not covered here).

For fully general models, we have to look for even more flexible approaches
such as random forests and boosting, described in Chapter 8. GAMSs provide
a useful compromise between linear and fully nonparametric models.

7.7.2 GAMs for Classification Problems

GAMs can also be used in situations where Y is qualitative. For simplicity,
here we assume Y takes on values 0 or 1, and let p(X) = Pr(Y = 1|X) be
the conditional probability (given the predictors) that the response equals
one. Recall the logistic regression model (4.6):

log <1f(;i))()) :ﬁo+[31X1 +52X2+"'+ﬂpo. (717)

The left-hand side is the log of the odds of P(Y = 1|X) versus P(Y = 0|X),
which (7.17) represents as a linear function of the predictors. A natural way
to extend (7.17) to allow for non-linear relationships is to use the model

log (%) :ﬂ0+f1(X1)+f2(X2)+"'+fp(Xp). (718)
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FIGURE 7.13. For the Wage data, the logistic regression GAM given in (7.19)
is fit to the binary response I(wage>250). Each plot displays the fitted function
and pointwise standard errors. The first function is linear in year, the second
function a smoothing spline with five degrees of freedom in age, and the third a
step function for education. There are very wide standard errors for the first
level <HS of education.

Equation 7.18 is a logistic regression GAM. It has all the same pros and
cons as discussed in the previous section for quantitative responses.

We fit a GAM to the Wage data in order to predict the probability that
an individual’s income exceeds $250,000 per year. The GAM that we fit
takes the form

X
log (p()) = Bo + 51 X year + fa(age) + fs(education), (7.19)
1-p(X)
where
p(X) = Pr(wage > 250|year, age, education).

Once again fs is fit using a smoothing spline with five degrees of freedom,
and f3 is fit as a step function, by creating dummy variables for each of the
levels of education. The resulting fit is shown in Figure 7.13. The last panel
looks suspicious, with very wide confidence intervals for level <HS. In fact,
no response values equal one for that category: no individuals with less than
a high school education make more than $250,000 per year. Hence we refit
the GAM, excluding the individuals with less than a high school education.
The resulting model is shown in Figure 7.14. As in Figures 7.11 and 7.12,
all three panels have similar vertical scales. This allows us to visually assess
the relative contributions of each of the variables. We observe that age and
education have a much larger effect than year on the probability of being
a high earner.

7.8 Lab: Non-Linear Modeling

In this lab, we demonstrate some of the nonlinear models discussed in
this chapter. We use the Wage data as a running example, and show that
many of the complex non-linear fitting procedures discussed can easily be
implemented in Python.
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FIGURE 7.14. The same model is fit as in Figure 7.13, this time excluding the
observations for which education is <HS. Now we see that increased education
tends to be associated with higher salaries.

As usual, we start with some of our standard imports.

In[1]:| import numpy as np, pandas as pd
from matplotlib.pyplot import subplots
import statsmodels.api as sm
from ISLP import load_data
from ISLP.models import (summarize,
poly,
ModelSpec as MS)
from statsmodels.stats.anova import anova_lm

We again collect the new imports needed for this lab. Many of these are
developed specifically for the ISLP package.

In[2]:| from pygam import (s as s_gam,
1 as 1_gam,
f as f_gam,
LinearGAM,
LogisticGAM)

from ISLP.transforms import (BSpline,
NaturalSpline)
from ISLP.models import bs, ns
from ISLP.pygam import (approx_lam,
degrees_of_freedom,
plot as plot_gam,
anova as anova_gam)

7.8.1 Polynomial Regression and Step Functions

We start by demonstrating how Figure 7.1 can be reproduced. Let’s begin
by loading the data.

In[3]:| Wage = load_data('Wage')
y = Wage['wage']
age = Wage['age'l]
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Throughout most of this lab, our response is Wage['wage'], which we
have stored as y above. As in Section 3.6.6, we will use the poly() function
to create a model matrix that will fit a 4th degree polynomial in age.

In[4]:| poly_age = MS([poly('age', degree=4)]).fit(Wage)
M = sm.0LS(y, poly_age.transform(Wage)).fit()
summarize (M)

Out [4]: coef std err t P>|t]
intercept 111.7036 0.729 153.283 0.000

poly(age, degree=4)[0] 447.0679 39.915 11.201 0.000
poly(age, degree=4)[1] -478.3158  39.915 -11.983 0.000
poly(age, degree=4)[2] 125.5217 39.915 3.145 0.002
poly(age, degree=4)[3] -77.9112 39.915 -1.952 0.051

This polynomial is constructed using the function poly(), which cre-
ates a special transformer Poly() (using sklearn terminology for feature
transformations such as PCA() seen in Section 6.5.3) which allows for easy
evaluation of the polynomial at new data points. Here poly() is referred
to as a helper function, and sets up the transformation; Poly() is the ac-
tual workhorse that computes the transformation. See also the discussion
of transformations on page 118.

In the code above, the first line executes the fit() method using the
dataframe Wage. This recomputes and stores as attributes any parameters
needed by Poly() on the training data, and these will be used on all sub-
sequent evaluations of the transform() method. For example, it is used on
the second line, as well as in the plotting function developed below.

We now create a grid of values for age at which we want predictions.

transformer

helper

In[6]:| age_grid = np.linspace(age.min(),
age.max (),
100)
age_df = pd.DataFrame({'age': age_grid})

Finally, we wish to plot the data and add the fit from the fourth-degree
polynomial. As we will make several similar plots below, we first write a
function to create all the ingredients and produce the plot. Our function
takes in a model specification (here a basis specified by a transform), as
well as a grid of age values. The function produces a fitted curve as well
as 95% confidence bands. By using an argument for basis we can produce
and plot the results with several different transforms, such as the splines
we will see shortly.

In[6]:| def plot_wage_fit(age_df,

basis,
title):
X = basis.transform(Wage)
Xnew = basis.transform(age_df)

M = sm.0LS(y, X).fit ()
preds = M.get_prediction(Xnew)
bands = preds.conf_int (alpha=0.05)
fig, ax = subplots(figsize=(8,8))
ax.scatter (age,

Yy



In [7]:

In [8]:

Out [8]:
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facecolor='gray',

alpha=0.5)
for val, 1ls in zip([preds.predicted_mean,
bands[:,0],
bands[:,1]1],
[OB0 , V== ) Dess0]) ) ¢

ax.plot (age_df .values, val, 1ls, linewidth=3)
ax.set_title(title, fontsize=20)
ax.set_xlabel('Age', fontsize=20)
ax.set_ylabel('Wage', fontsize=20);
return ax

We include an argument alpha to ax.scatter () to add some transparency
to the points. This provides a visual indication of density. Notice the use
of the zip() function in the for loop above (see Section 2.3.8). We have
three lines to plot, each with different colors and line types. Here zip()
conveniently bundles these together as iterators in the loop.”

We now plot the fit of the fourth-degree polynomial using this function.

plot_wage_fit (age_df,

poly_age,
'Degree-4 Polynomial');

With polynomial regression we must decide on the degree of the polyno-
mial to use. Sometimes we just wing it, and decide to use second or third
degree polynomials, simply to obtain a nonlinear fit. But we can make such
a decision in a more systematic way. One way to do this is through hypoth-
esis tests, which we demonstrate here. We now fit a series of models ranging
from linear (degree-one) to degree-five polynomials, and look to determine
the simplest model that is sufficient to explain the relationship between
wage and age. We use the anova_1m() function, which performs a series of
ANOVA tests. An analysis of variance or ANOVA tests the null hypothesis
that a model M; is sufficient to explain the data against the alternative
hypothesis that a more complex model M is required. The determination
is based on an F-test. To perform the test, the models M7 and My must
be nested: the space spanned by the predictors in M; must be a subspace
of the space spanned by the predictors in M. In this case, we fit five dif-
ferent polynomial models and sequentially compare the simpler model to
the more complex model.

models = [MS([poly('age', degree=d)])

for d in range(1l, 6)]
Xs = [model.fit_transform(Wage) for model in models]
anova_lm(*[sm.0LS(y, X_).fit()

for X_ in Xs])

df _resid ssr df_diff ss_diff F Pr (>F)
0 2998.0 5.022e+06 0.0 NaN NaN NaN
1 2997.0 4.793e+06 1.0 228786.010 143.593 2.364e-32
2 2996.0 4.778e+06 1.0 15755.694 9.889 1.679e-03
3 2995.0 4.772e+06 1.0 6070.152 3.810 5.105e-02

"In Python speak, an “iterator” is an object with a finite number of values, that can
be iterated on, as in a loop.

iterator

analysis of
variance



In[9]:

Out [9] :

In [10]:

Out[10]:

In [11]:

Out[11]:
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4 2994.0 4.770e+06 1.0 1282.563 0.805 3.697e-01

Notice the * in the anova_1m() line above. This function takes a variable
number of non-keyword arguments, in this case fitted models. When these
models are provided as a list (as is done here), it must be prefixed by *.

The p-value comparing the linear models[0] to the quadratic models[1]
is essentially zero, indicating that a linear fit is not sufficient.® Similarly the
p-value comparing the quadratic models[1] to the cubic models[2] is very
low (0.0017), so the quadratic fit is also insufficient. The p-value comparing
the cubic and degree-four polynomials, models[2] and models[3], is approx-
imately 5%, while the degree-five polynomial models[4] seems unnecessary
because its p-value is 0.37. Hence, either a cubic or a quartic polynomial
appear to provide a reasonable fit to the data, but lower- or higher-order
models are not justified.

In this case, instead of using the anova() function, we could have obtained
these p-values more succinctly by exploiting the fact that poly() creates
orthogonal polynomials.

summarize (M)

coef std err t P>|t]
intercept 111.7036 0.729 153.283 0.000
poly(age, degree=4)[0] 447.0679  39.915 11.201 0.000
poly(age, degree=4)[1] -478.3158 39.9156 -11.983 0.000
poly(age, degree=4)[2] 125.5217  39.915 3.145 0.002
poly(age, degree=4)[3] -77.9112 39.915 -1.952 0.051

Notice that the p-values are the same, and in fact the square of the
t-statistics are equal to the F-statistics from the anova_1m() function; for
example:

(-11.983) **2

143.59228

However, the ANOVA method works whether or not we used orthogonal
polynomials, provided the models are nested. For example, we can use
anova_lm() to compare the following three models, which all have a linear
term in education and a polynomial in age of different degrees:

models = [MS(['education', poly('age', degree=d)])
for d in range(1l, 4)]
XEs = [model.fit_transform(Wage)
for model in models]
anova_lm(*[sm.0LS(y, X_).fit() for X_ in XEs])

df _resid ssr df_diff ss_diff F Pr (>F)
0 2997.0 3.902e+06 0.0 NaN NaN NaN
1 2996.0 3.759e+06 1.0 142862.701 113.992 3.838e-26
2 2995.0 3.754e+06 1.0 5926.207 4.729 2.974e-02

8Indexing starting at zero is confusing for the polynomial degree example, since
models[1] is quadratic rather than linear!



In [12]:

Out[12]:

In [13]:

In [14]:

314 7. Moving Beyond Linearity

As an alternative to using hypothesis tests and ANOVA, we could choose
the polynomial degree using cross-validation, as discussed in Chapter 5.

Next we consider the task of predicting whether an individual earns more
than $250,000 per year. We proceed much as before, except that first we
create the appropriate response vector, and then apply the glm() function
using the binomial family in order to fit a polynomial logistic regression
model.

X = poly_age.transform(Wage)
high_earn = Wage['high_earn'] = y > 250
glm = sm.GLM(y > 250,
X,
family=sm.families.Binomial ())
B = glm.fit ()
summarize (B)

coef std err z P>|z|

intercept -4.3012 0.345 -12.457 0.000

poly(age, degree=4)[0] 71.9642 26.133 2.754 0.006
poly(age, degree=4)[1] -85.7729  35.929 -2.387 0.017
poly(age, degree=4)[2] 34.1626 19.697 1.734 0.083
poly(age, degree=4)[3] -47.4008 24.105 -1.966 0.049

Once again, we make predictions using the get_prediction() method.

newX = poly_age.transform(age_df)
preds = B.get_prediction(newX)
bands = preds.conf_int(alpha=0.05)

We now plot the estimated relationship.

fig, ax = subplots(figsize=(8,8))

rng = np.random.default_rng(0)

ax.scatter (age +
0.2 * rng.uniform(size=y.shape[0]),
np.where(high_earn, 0.198, 0.002),

fc='gray',
marker="'|")
for val, 1ls in zip([preds.predicted_mean,
bands[:,0],
bands[:,1]],
[0, Vo=l ) Vees0])) &

ax.plot(age_df.values, val, 1ls, linewidth=3)
ax.set_title('Degree-4 Polynomial', fontsize=20)
ax.set_xlabel ('Age', fontsize=20)
ax.set_ylim([0,0.2])
ax.set_ylabel ('P(Wage > 250)', fontsize=20);

We have drawn the age values corresponding to the observations with wage
values above 250 as gray marks on the top of the plot, and those with
wage values below 250 are shown as gray marks on the bottom of the plot.
We added a small amount of noise to jitter the age values a bit so that
observations with the same age value do not cover each other up. This type
of plot is often called a rug plot.

In order to fit a step function, as discussed in Section 7.2, we first use
the pd.qcut () function to discretize age based on quantiles. Then we use

rug plot

pd.qcut ()
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pd.get_dummies() to create the columns of the model matrix for this cate- ot
gorical variable. Note that this function will include all columns for a given gm;lii esO
categorical, rather than the usual approach which drops one of the levels.

In[15]:| cut_age = pd.qcut(age, 4)
summarize (sm.0LS(y, pd.get_dummies(cut_age)).fit())

Out[15]: coef std err t P>|tl|
(17.999, 33.75] 94.1584 1.478 63.692 0.0

(33.75, 42.0] 116.6608 1.470 79.385 0.0

(42.0, 51.0] 119.1887 1.416 84.147 0.0

(51.0, 80.0] 116.5717 1.559 74.751 0.0

Here pd.qcut () automatically picked the cutpoints based on the quan-
tiles 256%, 50% and 75%, which results in four regions. We could also have
specified our own quantiles directly instead of the argument 4. For cuts
not based on quantiles we would use the pd.cut() function. The function
pd.qgcut() (and pd.cut()) returns an ordered categorical variable. The re-
gression model then creates a set of dummy variables for use in the regres-
sion. Since age is the only variable in the model, the value $94,158.40 is the
average salary for those under 33.75 years of age, and the other coefficients
are the average salary for those in the other age groups. We can produce
predictions and plots just as we did in the case of the polynomial fit.

pd.cut()

7.8.2  Splines

In order to fit regression splines, we use transforms from the ISLP package.
The actual spline evaluation functions are in the scipy.interpolate pack-
age; we have simply wrapped them as transforms similar to Poly() and
PCAQ).

In Section 7.4, we saw that regression splines can be fit by constructing
an appropriate matrix of basis functions. The BSpline() function generates
the entire matrix of basis functions for splines with the specified set of
knots. By default, the B-splines produced are cubic. To change the degree,
use the argument degree.

BSpline()

In[16]:| bs_ = BSpline(internal_knots=[25,40,60], intercept=True).fit(age)
bs_age = bs_.transform(age)
bs_age.shape

Out[16]: (3000, 7)

This results in a seven-column matrix, which is what is expected for a cubic-
spline basis with 3 interior knots. We can form this same matrix using the
bs() object, which facilitates adding this to a model-matrix builder (as in
poly () versus its workhorse Poly()) described in Section 7.8.1.

We now fit a cubic spline model to the Wage data.

In[17]:| bs_age = MS([bs('age', internal_knots=[25,40,60])])
Xbs = bs_age.fit_transform(Wage)
M = sm.0LS(y, Xbs).fit()
summarize (M)
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coef std err

intercept 60.494 9.460

bs(age, internal_knots=[25, 40, 60]) [0] 3.980 12.538
bs(age, internal_knots=[25, 40, 60])[1] 44.631 9.626

bs(age, internal_knots=[25, 40, 60])[2] 62.839 10.755
bs(age, internal_knots=[25, 40, 60])[3] 55.991 10.706
bs(age, internal_knots=[25, 40, 60])[4] 50.688 14.402
bs(age, internal_knots=[25, 40, 60])[56] 16.606 19.126

The column names are a little cumbersome, and have caused us to trun-
cate the printed summary. They can be set on construction using the name
argument as follows.

bs_age = MS([bs('age',
internal_knots=[25,40,60],
name="'bs (age) ') 1)

Xbs = bs_age.fit_transform(Wage)

M = sm.0LS(y, Xbs).fit()

summarize (M)

coef std err t P>t

intercept 60.494 9.460 6.394 0.000

bs(age, knots) [0] 3.981 12.538 0.317 0.751
bs (age, knots) [1] 44.631 9.626 4.636 0.000
bs(age, knots)[2] 62.839 10.755 5.843  0.000
bs (age, knots) [3] 55.991 10.706 5.230 0.000
bs(age, knots)[4] 50.688 14.402 3.520  0.000
bs (age, knots) [5] 16.606 19.126 0.868 0.385

Notice that there are 6 spline coefficients rather than 7. This is because, by
default, bs() assumes intercept=False, since we typically have an overall
intercept in the model. So it generates the spline basis with the given knots,
and then discards one of the basis functions to account for the intercept.

We could also use the df (degrees of freedom) option to specify the com-
plexity of the spline. We see above that with 3 knots, the spline basis has
6 columns or degrees of freedom. When we specify df=6 rather than the
actual knots, bs() will produce a spline with 3 knots chosen at uniform
quantiles of the training data. We can see these chosen knots most easily
using Bspline() directly:

BSpline (df=6) .fit (age).internal_knots_

array ([33.75, 42.0, 51.0])

When asking for six degrees of freedom, the transform chooses knots at
ages 33.75, 42.0, and 51.0, which correspond to the 25th, 50th, and 75th
percentiles of age.

When using B-splines we need not limit ourselves to cubic polynomials
(i.e. degree=3). For instance, using degree=0 results in piecewise constant
functions, as in our example with pd.qcut () above.

bs_age0 = MS([bs('age',

df=3,

degree=0)]) .fit(Wage)
XbsO = bs_ageO.transform(Wage)
summarize (sm.0LS(y, Xbs0).fit())
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coef std err t P>t
intercept 94.158 1.478  63.687 0.0
bs(age, df=3, degree=0) [0] 22.349 2.152  10.388 0.0
bs(age, df=3, degree=0) [1] 24.808 2.044 12.137 0.0
bs(age, df=3, degree=0) [2] 22.781 2.087  10.917 0.0
This fit should be compared with cell [15] where we use gcut () to create
four bins by cutting at the 25%, 50% and 75% quantiles of age. Since we
specified df=3 for degree-zero splines here, there will also be knots at the
same three quantiles. Although the coefficients appear different, we see that
this is a result of the different coding. For example, the first coefficient is
identical in both cases, and is the mean response in the first bin. For the
second coefficient, we have 94.158 4 22.349 = 116.507 ~ 116.611, the latter
being the mean in the second bin in cell [15]. Here the intercept is coded by
a column of ones, so the second, third and fourth coefficients are increments
for those bins. Why is the sum not exactly the same? It turns out that the
gcut () uses <, while bs() uses < when deciding bin membership.

In order to fit a natural spline, we use the NaturalSpline() transform
with the corresponding helper ns(). Here we fit a natural spline with five
degrees of freedom (excluding the intercept) and plot the results.
ns_age = MS([ns('age', df=5)]).fit(Wage)

M_ns = sm.0LS(y, ns_age.transform(Wage)).fit ()
summarize (M_ns)
coef std err t P>t

intercept 60.475 4.708 12.844  0.000
ns(age, df=5)[0] 61.527 4.709 13.065  0.000
ns(age, df=5)[1] 55.691 5.717 9.741  0.000
ns(age, df=5)[2] 46.818 4.948 9.463  0.000
ns(age, df=5)[3] 83.204  11.918 6.982  0.000
ns(age, df=5)[4] 6.877 9.484 0.725  0.468
We now plot the natural spline using our plotting function.
plot_wage_fit (age_df,

ns_age,
'Natural spline, df=5');

7.8.3  Smoothing Splines and GAMs

A smoothing spline is a special case of a GAM with squared-error loss
and a single feature. To fit GAMs in Python we will use the pygam package
which can be installed via pip install pygam. The estimator LinearGAM()
uses squared-error loss. The GAM is specified by associating each column
of a model matrix with a particular smoothing operation: s for smoothing
spline; 1 for linear, and £ for factor or categorical variables. The argument 0
passed to s below indicates that this smoother will apply to the first column
of a feature matrix. Below, we pass it a matrix with a single column: X_age.
The argument lam is the penalty parameter A as discussed in Section 7.5.2.
X_age = np.asarray(age) .reshape((-1,1))

gam = LinearGAM(s_gam (0, lam=0.6))
gam.fit (X_age, y)

Natural
Spline()

pygam
LinearGAM()
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LinearGAM(callbacks=[Deviance (), Diffs()], fit_intercept=True,
max_iter=100, scale=None, terms=s(0) + intercept, tol=0.0001,
verbose=False)

The pygam library generally expects a matrix of features so we reshape age
to be a matrix (a two-dimensional array) instead of a vector (i.e. a one-
dimensional array). The -1 in the call to the reshape () method tells numpy
to impute the size of that dimension based on the remaining entries of the
shape tuple.

Let’s investigate how the fit changes with the smoothing parameter lam.
The function np.logspace() is similar to np.linspace() but spaces points
evenly on the log-scale. Below we vary lam from 1072 to 106.

fig, ax = subplots(figsize=(8,8))
ax.scatter(age, y, facecolor='gray', alpha=0.5)
for lam in np.logspace(-2, 6, 5):
gam = LinearGAM(s_gam (0, lam=lam)).fit(X_age, y)
ax.plot (age_grid,
gam.predict (age_grid),
label='{:.1e}'.format(lam),
linewidth=3)
ax.set_xlabel('Age', fontsize=20)
ax.set_ylabel('Wage', fontsize=20);
ax.legend(title="'$\lambda$');

The pygam package can perform a search for an optimal smoothing pa-
rameter.

gam_opt = gam.gridsearch(X_age, y)

ax.plot (age_grid,
gam_opt.predict (age_grid),
label="'Grid search',
linewidth=4)

ax.legend ()

fig

Alternatively, we can fix the degrees of freedom of the smoothing spline
using a function included in the ISLP.pygam package. Below we find a value
of A that gives us roughly four degrees of freedom. We note here that these
degrees of freedom include the unpenalized intercept and linear term of the
smoothing spline, hence there are at least two degrees of freedom.

age_term = gam.terms[0]

lam_4 = approx_lam(X_age, age_term, 4)
age_term.lam = lam_4
degrees_of_freedom(X_age, age_term)

4.000000100004728

Let’s vary the degrees of freedom in a similar plot to above. We choose the
degrees of freedom as the desired degrees of freedom plus one to account
for the fact that these smoothing splines always have an intercept term.
Hence, a value of one for df is just a linear fit.

fig, ax = subplots(figsize=(8,8))
ax.scatter (X_age,
Yy

np.logspace()
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facecolor='gray',
alpha=0.3)
for df inm [1,3,4,8,15]:
lam = approx_lam(X_age, age_term, df+1)
age_term.lam = lam
gam.fit(X_age, y)
ax.plot (age_grid,
gam.predict (age_grid),
label='{:d}'.format (df),
linewidth=4)
ax.set_xlabel('Age', fontsize=20)
ax.set_ylabel('Wage', fontsize=20);
ax.legend(title='Degrees of freedom');

Additive Models with Several Terms

The strength of generalized additive models lies in their ability to fit mul-
tivariate regression models with more flexibility than linear models. We
demonstrate two approaches: the first in a more manual fashion using nat-
ural splines and piecewise constant functions, and the second using the
pygam package and smoothing splines.

We now fit a GAM by hand to predict wage using natural spline functions
of year and age, treating education as a qualitative predictor, as in (7.16).
Since this is just a big linear regression model using an appropriate choice
of basis functions, we can simply do this using the sm.0LS() function.

We will build the model matrix in a more manual fashion here, since we
wish to access the pieces separately when constructing partial dependence
plots.

ns_age = NaturalSpline(df=4).fit(age)

ns_year = NaturalSpline(df=5).fit(Wagel['year'])

Xs = [ns_age.transform(age),
ns_year.transform(Wage['year']),
pd.get_dummies (Wage['education']) .values]

X_bh = np.hstack(Xs)

gam_bh = sm.0LS(y, X_bh).fit()

Here the function NaturalSpline() is the workhorse supporting the ns()
helper function. We chose to use all columns of the indicator matrix for
the categorical variable education, making an intercept redundant. Finally,
we stacked the three component matrices horizontally to form the model
matrix X_bh.

We now show how to construct partial dependence plots for each of the
terms in our rudimentary GAM. We can do this by hand, given grids for
age and year. We simply predict with new X matrices, fixing all but one
of the features at a time.

age_grid = np.linspace(age.min(),
age.max (),
100)
X_age_bh = X_bh.copy () [:100]
X_age_bh[:] = X_bh[:].mean(0) [None,:]
X_age_bh[:,:4] = ns_age.transform(age_grid)
preds = gam_bh.get_prediction(X_age_bh)
bounds_age = preds.conf_int (alpha=0.05)
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partial_age = preds.predicted_mean

center = partial_age.mean()

partial_age -= center

bounds_age -= center

fig, ax = subplots(figsize=(8,8))

ax.plot(age_grid, partial_age, 'b', linewidth=3)
ax.plot (age_grid, bounds_agel[:,0], 'r--', linewidth=3)
ax.plot(age_grid, bounds_agel[:,1], 'r--', linewidth=3)
ax.set_xlabel('Age')

ax.set_ylabel ('Effect on wage')

ax.set_title('Partial dependence of age on wage', fontsize=20);

Let’s explain in some detail what we did above. The idea is to create a new
prediction matrix, where all but the columns belonging to age are constant
(and set to their training-data means). The four columns for age are filled
in with the natural spline basis evaluated at the 100 values in age_grid.

1. We made a grid of length 100 in age, and created a matrix X_age_bh

with 100 rows and the same number of columns as X_bh.

2. We replaced every row of this matrix with the column means of the

original.

3. We then replace just the first four columns representing age with the

natural spline basis computed at the values in age_grid.

The remaining steps should by now be familiar.
We also look at the effect of year on wage; the process is the same.

year_grid = np.linspace (2003, 2009, 100)
year_grid = np.linspace(Wage['year'].min(),

Wage['year'] .max(),
100)

X_year_bh = X_bh.copy() [:100]
X_year_bh[:] = X_bh[:].mean(0) [None, :]

X_y

ear_bh[:,4:9] = ns_year.transform(year_grid)

preds = gam_bh.get_prediction(X_year_bh)

bounds_year = preds.conf_int(alpha=0.05)

partial_year = preds.predicted_mean

center = partial_year.mean()

partial_year -= center

bounds_year -= center

fig, ax = subplots(figsize=(8,8))

ax.plot(year_grid, partial_year, 'b', linewidth=3)
ax.plot(year_grid, bounds_year[:,0], 'r--', linewidth=3)
ax.plot (year_grid, bounds_year[:,1], 'r--', linewidth=3)
ax.set_xlabel('Year')

ax.set_ylabel ('Effect on wage')

ax.set_title('Partial dependence of year on wage', fontsize=20);

We now fit the model (7.16) using smoothing splines rather than nat-
ural splines. All of the terms in (7.16) are fit simultaneously, taking each
other into account to explain the response. The pygam package only works
with matrices, so we must convert the categorical series education to its
array representation, which can be found with the cat.codes attribute of

edu

cation. As year only has 7 unique values, we use only seven basis func-

tions for it.
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gam_full = LinearGAM(s_gam(0) +
s_gam(l, n_splines=7) +
f_gam(2, lam=0))
Xgam = np.column_stack([age,
Wage['year'],
Wage['education'].cat.codes])
gam_full = gam_full.fit(Xgam, y)

The two s_gam() terms result in smoothing spline fits, and use a default
value for \ (1am=0.6), which is somewhat arbitrary. For the categorical term
education, specified using a f_gam() term, we specify lam=0 to avoid any
shrinkage. We produce the partial dependence plot in age to see the effect
of these choices.

The values for the plot are generated by the pygam package. We provide
a plot_gam() function for partial-dependence plots in ISLP.pygam, which
makes this job easier than in our last example with natural splines.

fig, ax = subplots(figsize=(8,8))

plot_gam(gam_full, O, ax=ax)

ax.set_xlabel('Age')

ax.set_ylabel ('Effect on wage')

ax.set_title('Partial dependence of age on wage - default lam=0.6"',
fontsize=20) ;

We see that the function is somewhat wiggly. It is more natural to specify
the df than a value for lam. We refit a GAM using four degrees of freedom
each for age and year. Recall that the addition of one below takes into
account the intercept of the smoothing spline.

age_term = gam_full.terms[0]

age_term.lam = approx_lam(Xgam, age_term, df=4+1)
year_term = gam_full.terms[1]

year_term.lam = approx_lam(Xgam, year_term, df=4+1)
gam_full = gam_full.fit(Xgam, y)

Note that updating age_term.lam above updates it in gam_full.terms[0] as
welll Likewise for year_term.lam.

Repeating the plot for age, we see that it is much smoother. We also
produce the plot for year.

fig, ax = subplots(figsize=(8,8))
plot_gam(gam_full,
1,
ax=ax)
ax.set_xlabel('Year')
ax.set_ylabel ('Effect on wage')
ax.set_title('Partial dependence of year on wage', fontsize=20)

Finally we plot education, which is categorical. The partial dependence
plot is different, and more suitable for the set of fitted constants for each
level of this variable.

fig, ax = subplots(figsize=(8, 8))
ax = plot_gam(gam_full, 2)
ax.set_xlabel ('Education')
ax.set_ylabel ('Effect on wage')

plot_gam()
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ax.set_title('Partial dependence of wage on education',
fontsize=20);
ax.set_xticklabels(Wage['education'].cat.categories, fontsize=8);

ANOVA Tests for Additive Models

In all of our models, the function of year looks rather linear. We can perform
a series of ANOVA tests in order to determine which of these three models
is best: a GAM that excludes year (M), a GAM that uses a linear function
of year (Ms), or a GAM that uses a spline function of year (M3).

gam_0O = LinearGAM(age_term + f_gam(2, lam=0))
gam_0.fit (Xgam, y)
gam_linear = LinearGAM(age_term +
1_gam(1l, lam=0) +
f_gam(2, lam=0))
gam_linear.fit(Xgam, y)

LinearGAM(callbacks=[Deviance(), Diffs()], fit_intercept=True,
max_iter=100, scale=None, terms=s(0) + 1(1) + £f(2) + intercept,
t01=0.0001, verbose=False)

Notice our use of age_term in the expressions above. We do this because
earlier we set the value for lam in this term to achieve four degrees of
freedom.

To directly assess the effect of year we run an ANOVA on the three
models fit above.

anova_gam(gam_0O, gam_linear, gam_full)

deviance df deviance_diff df_diff F pvalue
0 3714362.366 2991.004 NaN NaN NaN NaN
1 3696745.823 2990.005 17616.543 0.999 14.265 0.002
2 3693142.930 2987.007 3602.894 2.998 0.972 0.436

We find that there is compelling evidence that a GAM with a linear function
in year is better than a GAM that does not include year at all (p-value=
0.002). However, there is no evidence that a non-linear function of year
is needed (p-value=0.435). In other words, based on the results of this
ANOVA, M, is preferred.

We can repeat the same process for age as well. We see there is very clear
evidence that a non-linear term is required for age.

gam_0 = LinearGAM(year_term +
f_gam(2, lam=0))
gam_linear = LinearGAM(1l_gam(0O, lam=0) +
year_term +
f_gam(2, lam=0))
gam_0.fit (Xgam, y)
gam_linear.fit(Xgam, y)
anova_gam(gam_0, gam_linear, gam_full)
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deviance df deviance_diff df_diff F pvalue
0 3975443.045 2991.001 NaN NaN NaN NaN
1 3850246.908 2990.001 125196.137 1.000 101.270 0.000
2 3693142.930 2987.007 157103.978 2.993 42.448 0.000

There is a (verbose) summary() method for the GAM fit. (We do not
reproduce it here.)

gam_full.summary ()

We can make predictions from gam objects, just like from 1m objects, using
the predict () method for the class gam. Here we make predictions on the
training set.

Yhat = gam_full.predict (Xgam)

In order to fit a logistic regression GAM, we use LogisticGAM() from
pygam.

gam_logit = LogisticGAM(age_term +
1_gam(1, lam=0) +
f_gam(2, lam=0))

gam_logit.fit(Xgam, high_earn)

LogisticGAM(callbacks=[Deviance(), Diffs(), Accuracy()],
fit_intercept=True, max_iter=100,
terms=s(0) + 1(1) + f(2) + intercept, tol=0.0001, verbose=False)

fig, ax = subplots(figsize=(8, 8))

ax = plot_gam(gam_logit, 2)

ax.set_xlabel ('Education')

ax.set_ylabel ('Effect on wage')

ax.set_title('Partial dependence of wage on education',
fontsize=20) ;

ax.set_xticklabels(Wage['education'].cat.categories, fontsize=8);

The model seems to be very flat, with especially high error bars for the
first category. Let’s look at the data a bit more closely.

pd.crosstab(Wage['high_earn'], Wagel['education'])

We see that there are no high earners in the first category of education,
meaning that the model will have a hard time fitting. We will fit a logistic
regression GAM excluding all observations falling into this category. This
provides more sensible results.

To do so, we could subset the model matrix, though this will not remove
the column from Xgam. While we can deduce which column corresponds to
this feature, for reproducibility’s sake we reform the model matrix on this
smaller subset.

only_hs = Wagel['education'] == '1. < HS Grad'
Wage_ = Wage.loc[~only_hs]
Xgam_ = np.column_stack([Wage_['age'],

Wage_['year'],
Wage_['education'].cat.codes-1])
high_earn_ = Wage_['high_earn']

LogisticGAM()
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In the second-to-last line above, we subtract one from the codes of the
category, due to a bug in pygam. It just relabels the education values and
hence has no effect on the fit.

We now fit the model.

In[45]:| gam_logit_ = LogisticGAM(age_term +
year_term +
f_gam(2, lam=0))

gam_logit_.fit(Xgam_, high_earn_)

Out[45]: LogisticGAM(callbacks=[Deviance(), Diffs(), Accuracy()],
fit_intercept=True, max_iter=100,
terms=s(0) + s(1) + £(2) + intercept, tol=0.0001, verbose=False)

Let’s look at the effect of education, year and age on high earner status
now that we’ve removed those observations.

In[46]:| fig, ax = subplots(figsize=(8, 8))

ax = plot_gam(gam_logit_, 2)

ax.set_xlabel ('Education')

ax.set_ylabel ('Effect on wage')

ax.set_title('Partial dependence of high earner status on education

', fontsize=20);

ax.set_xticklabels(Wage['education'].cat.categories[1:],

fontsize=8) ;

In [47]:| fig, ax = subplots(figsize=(8, 8))
ax = plot_gam(gam_logit_, 1)
ax.set_xlabel('Year')
ax.set_ylabel ('Effect on wage')
ax.set_title('Partial dependence of high earner status on year',
fontsize=20) ;

In [48]:| fig, ax = subplots(figsize=(8, 8))
ax = plot_gam(gam_logit_, 0)
ax.set_xlabel('Age')
ax.set_ylabel ('Effect on wage')
ax.set_title('Partial dependence of high earner status on age',
fontsize=20) ;

7.8.4  Local Regression

We illustrate the use of local regression using the lowess() function from
sm.nonparametric. Some implementations of GAMs allow terms to be local
regression operators; this is not the case in pygam.

Here we fit local linear regression models using spans of 0.2 and 0.5;
that is, each neighborhood consists of 20% or 50% of the observations. As
expected, using a span of 0.5 is smoother than 0.2.

lowess()

In[49]:| lowess = sm.nonparametric.lowess
fig, ax = subplots(figsize=(8,8))
ax.scatter(age, y, facecolor='gray', alpha=0.5)
for span in [0.2, 0.5]:
fitted = lowess(y,



7.9 Exercises 325

age,
frac=span,
xvals=age_grid)
ax.plot (age_grid,
fitted,
label='{:.1f}'.format (span),
linewidth=4)
ax.set_xlabel ('Age', fontsize=20)
ax.set_ylabel('Wage', fontsize=20);
ax.legend(title='span', fontsize=15);

7.9 Exercises

Conceptual

1. It was mentioned in this chapter that a cubic regression spline with

one knot at ¢ can be obtained using a basis of the form z, z2, 3,

(z —¢&)3, where (z — §)3 = (z —§)? if 2 > £ and equals 0 otherwise.
We will now show that a function of the form

F(@) = Bo + Brx + Box? + Baz® + Pa(z — )3

is indeed a cubic regression spline, regardless of the values of 3y, 1, B2,

B3364-

(a) Find a cubic polynomial
h (l‘) =a;+biz+ C1.’1?2 + d1x3

such that f(x) = fi(z) for all z < £. Express a1,b1,c¢1,dp in
terms of ﬁ07617ﬁ27637ﬂ4~
(b) Find a cubic polynomial

f2(-'17) =ag + box + 62372 + d2x3

such that f(x) = fa(z) for all z > £. Express ag,bs, ca,dy in
terms of Bo, 51, B2, B3, B4. We have now established that f(z) is
a piecewise polynomial.

(¢) Show that f1(€) = f2(€). That is, f(z) is continuous at &.
(d) Show that f1(£) = f4(¢). That is, f'(x) is continuous at .
(e) Show that fi'(£) = f5(£). That is, f”(x) is continuous at &.
Therefore, f(x) is indeed a cubic spline.

Hint: Parts (d) and (e) of this problem require knowledge of single-
variable calculus. As a reminder, given a cubic polynomial

fi(z) = ay + bz + c12? + dya®,
the first derivative takes the form

fi(x) = by + 2c12 + 3dy2*
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and the second derivative takes the form

U (x) = 2¢1 + 6dy .

. Suppose that a curve § is computed to smoothly fit a set of n points

using the following formula:
n 2
§ = argmin (Z(y —g(z:))” + A/ [g(’") (ff)] dsv) ,
7 \i=1

where ¢(™) represents the mth derivative of ¢ (and g = g). Provide
example sketches of § in each of the following scenarios.

(b) A=o00o,m=1
(c) A=o0,m =
(d) A=00,m =3
() A=0,m=

Suppose we fit a curve with basis functions b1 (X) = X, by(X) =
(X —1)%I(X > 1). (Note that I(X > 1) equals 1 for X > 1 and 0
otherwise.) We fit the linear regression model

Y = Bo + B1b1(X) + B2ba(X) + ¢,

and obtain coefficient estimates Bo = 1751 = 1,32 = —2. Sketch the
estimated curve between X = —2 and X = 2. Note the intercepts,
slopes, and other relevant information.

Suppose we fit a curve with basis functions b1 (X) =I(0 < X < 2) —
(X-1DIQ1<X<2),(X)=(X-3)IB<X<4)+I4< X <5).
We fit the linear regression model

Y = Bo + B161(X) + Baba(X) + ¢,

and obtain coefficient estimates BO = 1,31 = 1,32 = 3. Sketch the
estimated curve between X = —2 and X = 6. Note the intercepts,
slopes, and other relevant information.

. Consider two curves, §; and §s, defined by

g1 = argmin (Zn:(yz —g(z:))* + >\/ {9(3) (J?)r d$> :

i=

g2 = argmin (i@i ~ 9@+ [ [80@)] dz) :

i=1
where ¢g(™) represents the mth derivative of g.
(a) As A — oo, will g1 or g have the smaller training RSS?
(b) As A — oo, will g1 or g2 have the smaller test RSS?
(¢) For A =0, will §; or g have the smaller training and test RSS?
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Applied

6. In this exercise, you will further analyze the Wage data set considered
throughout this chapter.

(a) Perform polynomial regression to predict wage using age. Use
cross-validation to select the optimal degree d for the polyno-
mial. What degree was chosen, and how does this compare to
the results of hypothesis testing using ANOVA? Make a plot of
the resulting polynomial fit to the data.

(b) Fit a step function to predict wage using age, and perform cross-
validation to choose the optimal number of cuts. Make a plot of
the fit obtained.

7. The Wage data set contains a number of other features not explored
in this chapter, such as marital status (maritl), job class (jobclass),
and others. Explore the relationships between some of these other
predictors and wage, and use non-linear fitting techniques in order to
fit flexible models to the data. Create plots of the results obtained,
and write a summary of your findings.

8. Fit some of the non-linear models investigated in this chapter to the
Auto data set. Is there evidence for non-linear relationships in this
data set? Create some informative plots to justify your answer.

9. This question uses the variables dis (the weighted mean of distances
to five Boston employment centers) and nox (nitrogen oxides concen-
tration in parts per 10 million) from the Boston data. We will treat
dis as the predictor and nox as the response.

(a) Use the poly() function from the ISLP.models module to fit a
cubic polynomial regression to predict nox using dis. Report the

regression output, and plot the resulting data and polynomial
fits.

(b) Plot the polynomial fits for a range of different polynomial
degrees (say, from 1 to 10), and report the associated residual
sum of squares.

(¢) Perform cross-validation or another approach to select the opti-
mal degree for the polynomial, and explain your results.

(d) Use the bs() function from the ISLP.models module to fit a re-
gression spline to predict nox using dis. Report the output for
the fit using four degrees of freedom. How did you choose the
knots? Plot the resulting fit.

(e) Now fit a regression spline for a range of degrees of freedom, and
plot the resulting fits and report the resulting RSS. Describe the
results obtained.

(f) Perform cross-validation or another approach in order to select
the best degrees of freedom for a regression spline on this data.
Describe your results.
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10. This question relates to the College data set.

(a) Split the data into a training set and a test set. Using out-of-state
tuition as the response and the other variables as the predictors,
perform forward stepwise selection on the training set in order
to identify a satisfactory model that uses just a subset of the
predictors.

(b) Fit a GAM on the training data, using out-of-state tuition as
the response and the features selected in the previous step as
the predictors. Plot the results, and explain your findings.

(c) Evaluate the model obtained on the test set, and explain the
results obtained.

(d) For which variables, if any, is there evidence of a non-linear
relationship with the response?

11. In Section 7.7, it was mentioned that GAMs are generally fit using

a backfitting approach. The idea behind backfitting is actually quite
simple. We will now explore backfitting in the context of multiple
linear regression.

Suppose that we would like to perform multiple linear regression, but
we do not have software to do so. Instead, we only have software
to perform simple linear regression. Therefore, we take the following
iterative approach: we repeatedly hold all but one coefficient esti-
mate fixed at its current value, and update only that coefficient
estimate using a simple linear regression. The process is continued un-
til convergence—that is, until the coeflicient estimates stop changing.

We now try this out on a toy example.

(a) Generate a response Y and two predictors X; and Xo, with
n = 100.

(b) Write a function simple_reg() that takes two arguments outcome
and feature, fits a simple linear regression model with this out-
come and feature, and returns the estimated intercept and slope.

(c) Initialize betal to take on a value of your choice. It does not
matter what value you choose.

(d) Keeping betal fixed, use your function simple_reg() to fit the
model:

Y —betal - X; = /80 +ﬁ2X2 + €.

Store the resulting values as beta0 and beta2.
(e) Keeping beta2 fixed, fit the model

Y —beta2- - Xo = fFo+ 51 X1 + e

Store the result as beta0 and betal (overwriting their previous
values).

(f) Write a for loop to repeat (c) and (d) 1,000 times. Report the
estimates of beta0, betal, and beta2 at each iteration of the for
loop. Create a plot in which each of these values is displayed,
with beta0, betal, and beta2.
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(g) Compare your answer in (e) to the results of simply perform-
ing multiple linear regression to predict Y using X; and Xo.
Use axline () method to overlay those multiple linear regression
coefficient estimates on the plot obtained in (e).

(h) On this data set, how many backfitting iterations were required
in order to obtain a “good” approximation to the multiple re-
gression coefficient estimates?

12. This problem is a continuation of the previous exercise. In a toy
example with p = 100, show that one can approximate the multiple
linear regression coefficient estimates by repeatedly performing simple
linear regression in a backfitting procedure. How many backfitting
iterations are required in order to obtain a “good” approximation to
the multiple regression coefficient estimates? Create a plot to justify
your answer.



