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Statistical Learning

2.1 What Is Statistical Learning?
In order to motivate our study of statistical learning, we begin with a simple
example. Suppose that we are statistical consultants hired by a client to
investigate the association between advertising and sales of a particular
product. The Advertising data set consists of the sales of that product
in 200 different markets, along with advertising budgets for the product in
each of those markets for three different media: TV, radio, and newspaper.
The data are displayed in Figure 2.1. It is not possible for our client to
directly increase sales of the product. On the other hand, they can control
the advertising expenditure in each of the three media. Therefore, if we
determine that there is an association between advertising and sales, then
we can instruct our client to adjust advertising budgets, thereby indirectly
increasing sales. In other words, our goal is to develop an accurate model
that can be used to predict sales on the basis of the three media budgets.

In this setting, the advertising budgets are input variables while sales input
variableis an output variable. The input variables are typically denoted using the
output
variable

symbol X, with a subscript to distinguish them. So X1 might be the TV
budget, X2 the radio budget, and X3 the newspaper budget. The inputs
go by different names, such as predictors, independent variables, features, predictor

independent
variable
feature

or sometimes just variables. The output variable—in this case, sales—is

variable

often called the response or dependent variable, and is typically denoted

response
dependent
variable

using the symbol Y . Throughout this book, we will use all of these terms
interchangeably.

More generally, suppose that we observe a quantitative response Y and p
different predictors, X1, X2, . . . , Xp. We assume that there is some
relationship between Y and X = (X1, X2, . . . , Xp), which can be written
in the very general form

Y = f(X) + ε. (2.1)
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FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a simple model that can be used to predict sales using TV, radio,
and newspaper, respectively.

Here f is some fixed but unknown function of X1, . . . , Xp, and ε is a random
error term, which is independent of X and has mean zero. In this formula- error termtion, f represents the systematic information that X provides about Y . systematic
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FIGURE 2.2. The Income data set. Left: The red dots are the observed values
of income (in thousands of dollars) and years of education for 30 individuals.
Right: The blue curve represents the true underlying relationship between income
and years of education, which is generally unknown (but is known in this case
because the data were simulated). The black lines represent the error associated
with each observation. Note that some errors are positive (if an observation lies
above the blue curve) and some are negative (if an observation lies below the
curve). Overall, these errors have approximately mean zero.

As another example, consider the left-hand panel of Figure 2.2, a plot of
income versus years of education for 30 individuals in the Income data set.
The plot suggests that one might be able to predict income using years of
education. However, the function f that connects the input variable to the
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output variable is in general unknown. In this situation one must estimate
f based on the observed points. Since Income is a simulated data set, f is
known and is shown by the blue curve in the right-hand panel of Figure 2.2.
The vertical lines represent the error terms ε. We note that some of the
30 observations lie above the blue curve and some lie below it; overall, the
errors have approximately mean zero.

In general, the function f may involve more than one input variable.
In Figure 2.3 we plot income as a function of years of education and
seniority. Here f is a two-dimensional surface that must be estimated
based on the observed data.

In essence, statistical learning refers to a set of approaches for estimating
f . In this chapter we outline some of the key theoretical concepts that arise
in estimating f , as well as tools for evaluating the estimates obtained.

2.1.1 Why Estimate f?
There are two main reasons that we may wish to estimate f : prediction
and inference. We discuss each in turn.

Prediction
In many situations, a set of inputs X are readily available, but the output
Y cannot be easily obtained. In this setting, since the error term averages
to zero, we can predict Y using

Ŷ = f̂(X), (2.2)

where f̂ represents our estimate for f , and Ŷ represents the resulting pre-
diction for Y . In this setting, f̂ is often treated as a black box, in the sense
that one is not typically concerned with the exact form of f̂ , provided that
it yields accurate predictions for Y .

As an example, suppose that X1, . . . , Xp are characteristics of a patient’s
blood sample that can be easily measured in a lab, and Y is a variable
encoding the patient’s risk for a severe adverse reaction to a particular
drug. It is natural to seek to predict Y using X, since we can then avoid
giving the drug in question to patients who are at high risk of an adverse
reaction—that is, patients for whom the estimate of Y is high.

The accuracy of Ŷ as a prediction for Y depends on two quantities,
which we will call the reducible error and the irreducible error. In general, reducible

error
irreducible
error

f̂ will not be a perfect estimate for f , and this inaccuracy will introduce
some error. This error is reducible because we can potentially improve the
accuracy of f̂ by using the most appropriate statistical learning technique to
estimate f . However, even if it were possible to form a perfect estimate for
f , so that our estimated response took the form Ŷ = f(X), our prediction
would still have some error in it! This is because Y is also a function of
ε, which, by definition, cannot be predicted using X. Therefore, variability
associated with ε also affects the accuracy of our predictions. This is known
as the irreducible error, because no matter how well we estimate f , we
cannot reduce the error introduced by ε.

Why is the irreducible error larger than zero? The quantity ε may con-
tain unmeasured variables that are useful in predicting Y : since we don’t
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FIGURE 2.3. The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface represents the true
underlying relationship between income and years of education and seniority,
which is known since the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.

measure them, f cannot use them for its prediction. The quantity ε may
also contain unmeasurable variation. For example, the risk of an adverse
reaction might vary for a given patient on a given day, depending on
manufacturing variation in the drug itself or the patient’s general feeling
of well-being on that day.

Consider a given estimate f̂ and a set of predictors X, which yields the
prediction Ŷ = f̂(X). Assume for a moment that both f̂ and X are fixed,
so that the only variability comes from ε. Then, it is easy to show that

E(Y − Ŷ )2 = E[f(X) + ε− f̂(X)]2

= [f(X)− f̂(X)]2︸ ︷︷ ︸
Reducible

+ Var(ε)︸ ︷︷ ︸
Irreducible

, (2.3)

where E(Y − Ŷ )2 represents the average, or expected value, of the squared expected
valuedifference between the predicted and actual value of Y , and Var(ε) repre-

sents the variance associated with the error term ε. varianceThe focus of this book is on techniques for estimating f with the aim of
minimizing the reducible error. It is important to keep in mind that the
irreducible error will always provide an upper bound on the accuracy of
our prediction for Y . This bound is almost always unknown in practice.

Inference
We are often interested in understanding the association between Y and
X1, . . . , Xp. In this situation we wish to estimate f , but our goal is not
necessarily to make predictions for Y . Now f̂ cannot be treated as a black
box, because we need to know its exact form. In this setting, one may be
interested in answering the following questions:
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• Which predictors are associated with the response? It is often the case
that only a small fraction of the available predictors are substantially
associated with Y . Identifying the few important predictors among a
large set of possible variables can be extremely useful, depending on
the application.

• What is the relationship between the response and each predictor?
Some predictors may have a positive relationship with Y , in the sense
that larger values of the predictor are associated with larger values of
Y . Other predictors may have the opposite relationship. Depending
on the complexity of f , the relationship between the response and a
given predictor may also depend on the values of the other predictors.

• Can the relationship between Y and each predictor be adequately sum-
marized using a linear equation, or is the relationship more compli-
cated? Historically, most methods for estimating f have taken a linear
form. In some situations, such an assumption is reasonable or even de-
sirable. But often the true relationship is more complicated, in which
case a linear model may not provide an accurate representation of
the relationship between the input and output variables.

In this book, we will see a number of examples that fall into the prediction
setting, the inference setting, or a combination of the two.

For instance, consider a company that is interested in conducting a
direct-marketing campaign. The goal is to identify individuals who are
likely to respond positively to a mailing, based on observations of demo-
graphic variables measured on each individual. In this case, the demo-
graphic variables serve as predictors, and response to the marketing cam-
paign (either positive or negative) serves as the outcome. The company is
not interested in obtaining a deep understanding of the relationships be-
tween each individual predictor and the response; instead, the company
simply wants to accurately predict the response using the predictors. This
is an example of modeling for prediction.

In contrast, consider the Advertising data illustrated in Figure 2.1. One
may be interested in answering questions such as:

– Which media are associated with sales?

– Which media generate the biggest boost in sales? or

– How large of an increase in sales is associated with a given increase
in TV advertising?

This situation falls into the inference paradigm. Another example involves
modeling the brand of a product that a customer might purchase based on
variables such as price, store location, discount levels, competition price,
and so forth. In this situation one might really be most interested in the
association between each variable and the probability of purchase. For in-
stance, to what extent is the product’s price associated with sales? This is
an example of modeling for inference.

Finally, some modeling could be conducted both for prediction and in-
ference. For example, in a real estate setting, one may seek to relate values
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of homes to inputs such as crime rate, zoning, distance from a river, air
quality, schools, income level of community, size of houses, and so forth. In
this case one might be interested in the association between each individ-
ual input variable and housing price—for instance, how much extra will a
house be worth if it has a view of the river? This is an inference problem.
Alternatively, one may simply be interested in predicting the value of a
home given its characteristics: is this house under- or over-valued? This is
a prediction problem.

Depending on whether our ultimate goal is prediction, inference, or a
combination of the two, different methods for estimating f may be ap-
propriate. For example, linear models allow for relatively simple and in- linear modelterpretable inference, but may not yield as accurate predictions as some
other approaches. In contrast, some of the highly non-linear approaches
that we discuss in the later chapters of this book can potentially provide
quite accurate predictions for Y , but this comes at the expense of a less
interpretable model for which inference is more challenging.

2.1.2 How Do We Estimate f?
Throughout this book, we explore many linear and non-linear approaches
for estimating f . However, these methods generally share certain charac-
teristics. We provide an overview of these shared characteristics in this
section. We will always assume that we have observed a set of n different
data points. For example in Figure 2.2 we observed n = 30 data points.
These observations are called the training data because we will use these training

dataobservations to train, or teach, our method how to estimate f . Let xij

represent the value of the jth predictor, or input, for observation i, where
i = 1, 2, . . . , n and j = 1, 2, . . . , p. Correspondingly, let yi represent the
response variable for the ith observation. Then our training data consist of
{(x1, y1), (x2, y2), . . . , (xn, yn)} where xi = (xi1, xi2, . . . , xip)T .

Our goal is to apply a statistical learning method to the training data
in order to estimate the unknown function f . In other words, we want to
find a function f̂ such that Y ≈ f̂(X) for any observation (X,Y ). Broadly
speaking, most statistical learning methods for this task can be character-
ized as either parametric or non-parametric. We now briefly discuss these parametric

non-
parametric

two types of approaches.

Parametric Methods
Parametric methods involve a two-step model-based approach.

1. First, we make an assumption about the functional form, or shape,
of f . For example, one very simple assumption is that f is linear in
X:

f(X) = β0 + β1X1 + β2X2 + · · ·+ βpXp. (2.4)
This is a linear model, which will be discussed extensively in Chap-
ter 3. Once we have assumed that f is linear, the problem of estimat-
ing f is greatly simplified. Instead of having to estimate an entirely
arbitrary p-dimensional function f(X), one only needs to estimate
the p+ 1 coefficients β0,β1, . . . ,βp.
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FIGURE 2.4. A linear model fit by least squares to the Income data from
Figure 2.3. The observations are shown in red, and the yellow plane indicates the
least squares fit to the data.

2. After a model has been selected, we need a procedure that uses the
training data to fit or train the model. In the case of the linear model fit

train(2.4), we need to estimate the parameters β0,β1, . . . ,βp. That is, we
want to find values of these parameters such that

Y ≈ β0 + β1X1 + β2X2 + · · ·+ βpXp.

The most common approach to fitting the model (2.4) is referred to
as (ordinary) least squares, which we discuss in Chapter 3. However, least squaresleast squares is one of many possible ways to fit the linear model. In
Chapter 6, we discuss other approaches for estimating the parameters
in (2.4).

The model-based approach just described is referred to as parametric;
it reduces the problem of estimating f down to one of estimating a set of
parameters. Assuming a parametric form for f simplifies the problem of
estimating f because it is generally much easier to estimate a set of pa-
rameters, such as β0,β1, . . . ,βp in the linear model (2.4), than it is to fit
an entirely arbitrary function f . The potential disadvantage of a paramet-
ric approach is that the model we choose will usually not match the true
unknown form of f . If the chosen model is too far from the true f , then
our estimate will be poor. We can try to address this problem by choos-
ing flexible models that can fit many different possible functional forms flexiblefor f . But in general, fitting a more flexible model requires estimating a
greater number of parameters. These more complex models can lead to a
phenomenon known as overfitting the data, which essentially means they overfittingfollow the errors, or noise, too closely. These issues are discussed through- noiseout this book.

Figure 2.4 shows an example of the parametric approach applied to the
Income data from Figure 2.3. We have fit a linear model of the form

income ≈ β0 + β1 × education+ β2 × seniority.
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FIGURE 2.5. A smooth thin-plate spline fit to the Income data from Figure 2.3
is shown in yellow; the observations are displayed in red. Splines are discussed in
Chapter 7.

Since we have assumed a linear relationship between the response and the
two predictors, the entire fitting problem reduces to estimating β0, β1, and
β2, which we do using least squares linear regression. Comparing Figure 2.3
to Figure 2.4, we can see that the linear fit given in Figure 2.4 is not quite
right: the true f has some curvature that is not captured in the linear fit.
However, the linear fit still appears to do a reasonable job of capturing the
positive relationship between years of education and income, as well as the
slightly less positive relationship between seniority and income. It may be
that with such a small number of observations, this is the best we can do.

Non-Parametric Methods
Non-parametric methods do not make explicit assumptions about the func-
tional form of f . Instead they seek an estimate of f that gets as close to the
data points as possible without being too rough or wiggly. Such approaches
can have a major advantage over parametric approaches: by avoiding the
assumption of a particular functional form for f , they have the potential
to accurately fit a wider range of possible shapes for f . Any parametric
approach brings with it the possibility that the functional form used to
estimate f is very different from the true f , in which case the resulting
model will not fit the data well. In contrast, non-parametric approaches
completely avoid this danger, since essentially no assumption about the
form of f is made. But non-parametric approaches do suffer from a major
disadvantage: since they do not reduce the problem of estimating f to a
small number of parameters, a very large number of observations (far more
than is typically needed for a parametric approach) is required in order to
obtain an accurate estimate for f .

An example of a non-parametric approach to fitting the Income data is
shown in Figure 2.5. A thin-plate spline is used to estimate f . This ap- thin-plate

splineproach does not impose any pre-specified model on f . It instead attempts
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FIGURE 2.6. A rough thin-plate spline fit to the Income data from Figure 2.3.
This fit makes zero errors on the training data.

to produce an estimate for f that is as close as possible to the observed
data, subject to the fit—that is, the yellow surface in Figure 2.5—being
smooth. In this case, the non-parametric fit has produced a remarkably ac-
curate estimate of the true f shown in Figure 2.3. In order to fit a thin-plate
spline, the data analyst must select a level of smoothness. Figure 2.6 shows
the same thin-plate spline fit using a lower level of smoothness, allowing
for a rougher fit. The resulting estimate fits the observed data perfectly!
However, the spline fit shown in Figure 2.6 is far more variable than the
true function f , from Figure 2.3. This is an example of overfitting the
data, which we discussed previously. It is an undesirable situation because
the fit obtained will not yield accurate estimates of the response on new
observations that were not part of the original training data set. We dis-
cuss methods for choosing the correct amount of smoothness in Chapter 5.
Splines are discussed in Chapter 7.

As we have seen, there are advantages and disadvantages to parametric
and non-parametric methods for statistical learning. We explore both types
of methods throughout this book.

2.1.3 The Trade-Off Between Prediction Accuracy and Model
Interpretability

Of the many methods that we examine in this book, some are less flexible,
or more restrictive, in the sense that they can produce just a relatively
small range of shapes to estimate f . For example, linear regression is a
relatively inflexible approach, because it can only generate linear functions
such as the lines shown in Figure 2.1 or the plane shown in Figure 2.4.
Other methods, such as the thin plate splines shown in Figures 2.5 and 2.6,
are considerably more flexible because they can generate a much wider
range of possible shapes to estimate f .
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FIGURE 2.7. A representation of the tradeoff between flexibility and inter-
pretability, using different statistical learning methods. In general, as the flexibility
of a method increases, its interpretability decreases.

One might reasonably ask the following question: why would we ever
choose to use a more restrictive method instead of a very flexible approach?
There are several reasons that we might prefer a more restrictive model.
If we are mainly interested in inference, then restrictive models are much
more interpretable. For instance, when inference is the goal, the linear
model may be a good choice since it will be quite easy to understand
the relationship between Y and X1, X2, . . . , Xp. In contrast, very flexible
approaches, such as the splines discussed in Chapter 7 and displayed in
Figures 2.5 and 2.6, and the boosting methods discussed in Chapter 8, can
lead to such complicated estimates of f that it is difficult to understand
how any individual predictor is associated with the response.

Figure 2.7 provides an illustration of the trade-off between flexibility and
interpretability for some of the methods that we cover in this book. Least
squares linear regression, discussed in Chapter 3, is relatively inflexible but
is quite interpretable. The lasso, discussed in Chapter 6, relies upon the lassolinear model (2.4) but uses an alternative fitting procedure for estimating
the coefficients β0,β1, . . . ,βp. The new procedure is more restrictive in es-
timating the coefficients, and sets a number of them to exactly zero. Hence
in this sense the lasso is a less flexible approach than linear regression.
It is also more interpretable than linear regression, because in the final
model the response variable will only be related to a small subset of the
predictors—namely, those with nonzero coefficient estimates. Generalized
additive models (GAMs), discussed in Chapter 7, instead extend the lin- generalized

additive
model

ear model (2.4) to allow for certain non-linear relationships. Consequently,
GAMs are more flexible than linear regression. They are also somewhat
less interpretable than linear regression, because the relationship between
each predictor and the response is now modeled using a curve. Finally,
fully non-linear methods such as bagging, boosting, support vector machines bagging

boostingwith non-linear kernels, and neural networks (deep learning), discussed in
support
vector
machine

Chapters 8, 9, and 10, are highly flexible approaches that are harder to
interpret.
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We have established that when inference is the goal, there are clear ad-
vantages to using simple and relatively inflexible statistical learning meth-
ods. In some settings, however, we are only interested in prediction, and
the interpretability of the predictive model is simply not of interest. For
instance, if we seek to develop an algorithm to predict the price of a
stock, our sole requirement for the algorithm is that it predict accurately—
interpretability is not a concern. In this setting, we might expect that it
will be best to use the most flexible model available. Surprisingly, this is
not always the case! We will often obtain more accurate predictions using
a less flexible method. This phenomenon, which may seem counterintu-
itive at first glance, has to do with the potential for overfitting in highly
flexible methods. We saw an example of overfitting in Figure 2.6. We will
discuss this very important concept further in Section 2.2 and throughout
this book.

2.1.4 Supervised Versus Unsupervised Learning
Most statistical learning problems fall into one of two categories: supervised supervisedor unsupervised. The examples that we have discussed so far in this chap- unsupervisedter all fall into the supervised learning domain. For each observation of the
predictor measurement(s) xi, i = 1, . . . , n there is an associated response
measurement yi. We wish to fit a model that relates the response to the
predictors, with the aim of accurately predicting the response for future
observations (prediction) or better understanding the relationship between
the response and the predictors (inference). Many classical statistical learn-
ing methods such as linear regression and logistic regression (Chapter 4), as logistic

regressionwell as more modern approaches such as GAM, boosting, and support vec-
tor machines, operate in the supervised learning domain. The vast majority
of this book is devoted to this setting.

By contrast, unsupervised learning describes the somewhat more chal-
lenging situation in which for every observation i = 1, . . . , n, we observe
a vector of measurements xi but no associated response yi. It is not pos-
sible to fit a linear regression model, since there is no response variable
to predict. In this setting, we are in some sense working blind; the sit-
uation is referred to as unsupervised because we lack a response vari-
able that can supervise our analysis. What sort of statistical analysis is
possible? We can seek to understand the relationships between the variables
or between the observations. One statistical learning tool that we may use
in this setting is cluster analysis, or clustering. The goal of cluster analysis cluster

analysisis to ascertain, on the basis of x1, . . . , xn, whether the observations fall into
relatively distinct groups. For example, in a market segmentation study we
might observe multiple characteristics (variables) for potential customers,
such as zip code, family income, and shopping habits. We might believe
that the customers fall into different groups, such as big spenders versus
low spenders. If the information about each customer’s spending patterns
were available, then a supervised analysis would be possible. However, this
information is not available—that is, we do not know whether each poten-
tial customer is a big spender or not. In this setting, we can try to cluster
the customers on the basis of the variables measured, in order to identify
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FIGURE 2.8. A clustering data set involving three groups. Each group is
shown using a different colored symbol. Left: The three groups are well-separated.
In this setting, a clustering approach should successfully identify the three groups.
Right: There is some overlap among the groups. Now the clustering task is more
challenging.

distinct groups of potential customers. Identifying such groups can be of
interest because it might be that the groups differ with respect to some
property of interest, such as spending habits.

Figure 2.8 provides a simple illustration of the clustering problem. We
have plotted 150 observations with measurements on two variables, X1

and X2. Each observation corresponds to one of three distinct groups. For
illustrative purposes, we have plotted the members of each group using
different colors and symbols. However, in practice the group memberships
are unknown, and the goal is to determine the group to which each obser-
vation belongs. In the left-hand panel of Figure 2.8, this is a relatively easy
task because the groups are well-separated. By contrast, the right-hand
panel illustrates a more challenging setting in which there is some overlap
between the groups. A clustering method could not be expected to assign
all of the overlapping points to their correct group (blue, green, or orange).

In the examples shown in Figure 2.8, there are only two variables, and
so one can simply visually inspect the scatterplots of the observations in
order to identify clusters. However, in practice, we often encounter data
sets that contain many more than two variables. In this case, we cannot
easily plot the observations. For instance, if there are p variables in our
data set, then p(p − 1)/2 distinct scatterplots can be made, and visual
inspection is simply not a viable way to identify clusters. For this reason,
automated clustering methods are important. We discuss clustering and
other unsupervised learning approaches in Chapter 12.

Many problems fall naturally into the supervised or unsupervised learn-
ing paradigms. However, sometimes the question of whether an analysis
should be considered supervised or unsupervised is less clear-cut. For in-
stance, suppose that we have a set of n observations. For m of the observa-
tions, where m < n, we have both predictor measurements and a response
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measurement. For the remaining n − m observations, we have predictor
measurements but no response measurement. Such a scenario can arise if
the predictors can be measured relatively cheaply but the corresponding
responses are much more expensive to collect. We refer to this setting as
a semi-supervised learning problem. In this setting, we wish to use a sta- semi-

supervised
learning

tistical learning method that can incorporate the m observations for which
response measurements are available as well as the n−m observations for
which they are not. Although this is an interesting topic, it is beyond the
scope of this book.

2.1.5 Regression Versus Classification Problems
Variables can be characterized as either quantitative or qualitative (also quantitative

qualitativeknown as categorical). Quantitative variables take on numerical values. Ex-
categoricalamples include a person’s age, height, or income, the value of a house, and

the price of a stock. In contrast, qualitative variables take on values in
one of K different classes, or categories. Examples of qualitative variables classinclude a person’s marital status (married or not), the brand of product
purchased (brand A, B, or C), whether a person defaults on a debt (yes
or no), or a cancer diagnosis (Acute Myelogenous Leukemia, Acute Lym-
phoblastic Leukemia, or No Leukemia). We tend to refer to problems with
a quantitative response as regression problems, while those involving a regressionqualitative response are often referred to as classification problems. How- classificationever, the distinction is not always that crisp. Least squares linear regression
(Chapter 3) is used with a quantitative response, whereas logistic regression
(Chapter 4) is typically used with a qualitative (two-class, or binary) re- binarysponse. Thus, despite its name, logistic regression is a classification method.
But since it estimates class probabilities, it can be thought of as a regres-
sion method as well. Some statistical methods, such as K-nearest neighbors
(Chapters 2 and 4) and boosting (Chapter 8), can be used in the case of
either quantitative or qualitative responses.

We tend to select statistical learning methods on the basis of whether
the response is quantitative or qualitative; i.e. we might use linear regres-
sion when quantitative and logistic regression when qualitative. However,
whether the predictors are qualitative or quantitative is generally consid-
ered less important. Most of the statistical learning methods discussed in
this book can be applied regardless of the predictor variable type, provided
that any qualitative predictors are properly coded before the analysis is
performed. This is discussed in Chapter 3.

2.2 Assessing Model Accuracy
One of the key aims of this book is to introduce the reader to a wide range
of statistical learning methods that extend far beyond the standard linear
regression approach. Why is it necessary to introduce so many different
statistical learning approaches, rather than just a single best method? There
is no free lunch in statistics: no one method dominates all others over all
possible data sets. On a particular data set, one specific method may work
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best, but some other method may work better on a similar but different
data set. Hence it is an important task to decide for any given set of data
which method produces the best results. Selecting the best approach can
be one of the most challenging parts of performing statistical learning in
practice.

In this section, we discuss some of the most important concepts that
arise in selecting a statistical learning procedure for a specific data set. As
the book progresses, we will explain how the concepts presented here can
be applied in practice.

2.2.1 Measuring the Quality of Fit
In order to evaluate the performance of a statistical learning method on
a given data set, we need some way to measure how well its predictions
actually match the observed data. That is, we need to quantify the extent
to which the predicted response value for a given observation is close to
the true response value for that observation. In the regression setting, the
most commonly-used measure is the mean squared error (MSE), given by mean

squared
error

MSE =
1

n

n∑

i=1

(yi − f̂(xi))
2, (2.5)

where f̂(xi) is the prediction that f̂ gives for the ith observation. The MSE
will be small if the predicted responses are very close to the true responses,
and will be large if for some of the observations, the predicted and true
responses differ substantially.

The MSE in (2.5) is computed using the training data that was used to
fit the model, and so should more accurately be referred to as the training
MSE. But in general, we do not really care how well the method works training

MSEon the training data. Rather, we are interested in the accuracy of the pre-
dictions that we obtain when we apply our method to previously unseen
test data. Why is this what we care about? Suppose that we are interested test datain developing an algorithm to predict a stock’s price based on previous
stock returns. We can train the method using stock returns from the past
6 months. But we don’t really care how well our method predicts last week’s
stock price. We instead care about how well it will predict tomorrow’s price
or next month’s price. On a similar note, suppose that we have clinical
measurements (e.g. weight, blood pressure, height, age, family history of
disease) for a number of patients, as well as information about whether each
patient has diabetes. We can use these patients to train a statistical learn-
ing method to predict risk of diabetes based on clinical measurements. In
practice, we want this method to accurately predict diabetes risk for future
patients based on their clinical measurements. We are not very interested
in whether or not the method accurately predicts diabetes risk for patients
used to train the model, since we already know which of those patients
have diabetes.

To state it more mathematically, suppose that we fit our statistical learn-
ing method on our training observations {(x1, y1), (x2, y2), . . . , (xn, yn)},
and we obtain the estimate f̂ . We can then compute f̂(x1), f̂(x2), . . . , f̂(xn).
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FIGURE 2.9. Left: Data simulated from f , shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.

If these are approximately equal to y1, y2, . . . , yn, then the training MSE
given by (2.5) is small. However, we are really not interested in whether
f̂(xi) ≈ yi; instead, we want to know whether f̂(x0) is approximately equal
to y0, where (x0, y0) is a previously unseen test observation not used to train
the statistical learning method. We want to choose the method that gives
the lowest test MSE, as opposed to the lowest training MSE. In other words, test MSEif we had a large number of test observations, we could compute

Ave(y0 − f̂(x0))
2, (2.6)

the average squared prediction error for these test observations (x0, y0).
We’d like to select the model for which this quantity is as small as possible.

How can we go about trying to select a method that minimizes the test
MSE? In some settings, we may have a test data set available—that is,
we may have access to a set of observations that were not used to train
the statistical learning method. We can then simply evaluate (2.6) on the
test observations, and select the learning method for which the test MSE is
smallest. But what if no test observations are available? In that case, one
might imagine simply selecting a statistical learning method that minimizes
the training MSE (2.5). This seems like it might be a sensible approach,
since the training MSE and the test MSE appear to be closely related.
Unfortunately, there is a fundamental problem with this strategy: there
is no guarantee that the method with the lowest training MSE will also
have the lowest test MSE. Roughly speaking, the problem is that many
statistical methods specifically estimate coefficients so as to minimize the
training set MSE. For these methods, the training set MSE can be quite
small, but the test MSE is often much larger.

Figure 2.9 illustrates this phenomenon on a simple example. In the left-
hand panel of Figure 2.9, we have generated observations from (2.1) with
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the true f given by the black curve. The orange, blue and green curves illus-
trate three possible estimates for f obtained using methods with increasing
levels of flexibility. The orange line is the linear regression fit, which is rela-
tively inflexible. The blue and green curves were produced using smoothing
splines, discussed in Chapter 7, with different levels of smoothness. It is smoothing

splineclear that as the level of flexibility increases, the curves fit the observed
data more closely. The green curve is the most flexible and matches the
data very well; however, we observe that it fits the true f (shown in black)
poorly because it is too wiggly. By adjusting the level of flexibility of the
smoothing spline fit, we can produce many different fits to this data.

We now move on to the right-hand panel of Figure 2.9. The grey curve
displays the average training MSE as a function of flexibility, or more
formally the degrees of freedom, for a number of smoothing splines. The degrees of

freedomdegrees of freedom is a quantity that summarizes the flexibility of a curve;
it is discussed more fully in Chapter 7. The orange, blue and green squares
indicate the MSEs associated with the corresponding curves in the left-
hand panel. A more restricted and hence smoother curve has fewer degrees
of freedom than a wiggly curve—note that in Figure 2.9, linear regression
is at the most restrictive end, with two degrees of freedom. The training
MSE declines monotonically as flexibility increases. In this example the
true f is non-linear, and so the orange linear fit is not flexible enough to
estimate f well. The green curve has the lowest training MSE of all three
methods, since it corresponds to the most flexible of the three curves fit in
the left-hand panel.

In this example, we know the true function f , and so we can also com-
pute the test MSE over a very large test set, as a function of flexibility. (Of
course, in general f is unknown, so this will not be possible.) The test MSE
is displayed using the red curve in the right-hand panel of Figure 2.9. As
with the training MSE, the test MSE initially declines as the level of flex-
ibility increases. However, at some point the test MSE levels off and then
starts to increase again. Consequently, the orange and green curves both
have high test MSE. The blue curve minimizes the test MSE, which should
not be surprising given that visually it appears to estimate f the best in the
left-hand panel of Figure 2.9. The horizontal dashed line indicates Var(ε),
the irreducible error in (2.3), which corresponds to the lowest achievable
test MSE among all possible methods. Hence, the smoothing spline repre-
sented by the blue curve is close to optimal.

In the right-hand panel of Figure 2.9, as the flexibility of the statistical
learning method increases, we observe a monotone decrease in the training
MSE and a U-shape in the test MSE. This is a fundamental property of
statistical learning that holds regardless of the particular data set at hand
and regardless of the statistical method being used. As model flexibility
increases, the training MSE will decrease, but the test MSE may not. When
a given method yields a small training MSE but a large test MSE, we are
said to be overfitting the data. This happens because our statistical learning
procedure is working too hard to find patterns in the training data, and
may be picking up some patterns that are just caused by random chance
rather than by true properties of the unknown function f . When we overfit
the training data, the test MSE will be very large because the supposed
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FIGURE 2.10. Details are as in Figure 2.9, using a different true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.

patterns that the method found in the training data simply don’t exist
in the test data. Note that regardless of whether or not overfitting has
occurred, we almost always expect the training MSE to be smaller than
the test MSE because most statistical learning methods either directly or
indirectly seek to minimize the training MSE. Overfitting refers specifically
to the case in which a less flexible model would have yielded a smaller
test MSE.

Figure 2.10 provides another example in which the true f is approxi-
mately linear. Again we observe that the training MSE decreases mono-
tonically as the model flexibility increases, and that there is a U-shape in
the test MSE. However, because the truth is close to linear, the test MSE
only decreases slightly before increasing again, so that the orange least
squares fit is substantially better than the highly flexible green curve. Fi-
nally, Figure 2.11 displays an example in which f is highly non-linear. The
training and test MSE curves still exhibit the same general patterns, but
now there is a rapid decrease in both curves before the test MSE starts to
increase slowly.

In practice, one can usually compute the training MSE with relative
ease, but estimating the test MSE is considerably more difficult because
usually no test data are available. As the previous three examples illustrate,
the flexibility level corresponding to the model with the minimal test MSE
can vary considerably among data sets. Throughout this book, we discuss a
variety of approaches that can be used in practice to estimate this minimum
point. One important method is cross-validation (Chapter 5), which is a cross-

validationmethod for estimating the test MSE using the training data.

2.2.2 The Bias-Variance Trade-Off
The U-shape observed in the test MSE curves (Figures 2.9–2.11) turns out
to be the result of two competing properties of statistical learning methods.
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FIGURE 2.11. Details are as in Figure 2.9, using a different f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

Though the mathematical proof is beyond the scope of this book, it is
possible to show that the expected test MSE, for a given value x0, can
always be decomposed into the sum of three fundamental quantities: the
variance of f̂(x0), the squared bias of f̂(x0) and the variance of the error variance

biasterms ε. That is,

E
(
y0 − f̂(x0)

)2
= Var(f̂(x0)) + [Bias(f̂(x0))]

2 + Var(ε). (2.7)

Here the notation E
(
y0 − f̂(x0)

)2
defines the expected test MSE at x0, expected

test MSEand refers to the average test MSE that we would obtain if we repeatedly
estimated f using a large number of training sets, and tested each at x0. The
overall expected test MSE can be computed by averaging E

(
y0 − f̂(x0)

)2

over all possible values of x0 in the test set.
Equation 2.7 tells us that in order to minimize the expected test error,

we need to select a statistical learning method that simultaneously achieves
low variance and low bias. Note that variance is inherently a nonnegative
quantity, and squared bias is also nonnegative. Hence, we see that the
expected test MSE can never lie below Var(ε), the irreducible error from
(2.3).

What do we mean by the variance and bias of a statistical learning
method? Variance refers to the amount by which f̂ would change if we
estimated it using a different training data set. Since the training data
are used to fit the statistical learning method, different training data sets
will result in a different f̂ . But ideally the estimate for f should not vary
too much between training sets. However, if a method has high variance
then small changes in the training data can result in large changes in f̂ . In
general, more flexible statistical methods have higher variance. Consider the
green and orange curves in Figure 2.9. The flexible green curve is following
the observations very closely. It has high variance because changing any
one of these data points may cause the estimate f̂ to change considerably.
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(ε)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9–2.11.
The vertical dotted line indicates the flexibility level corresponding to the smallest
test MSE.

In contrast, the orange least squares line is relatively inflexible and has low
variance, because moving any single observation will likely cause only a
small shift in the position of the line.

On the other hand, bias refers to the error that is introduced by approxi-
mating a real-life problem, which may be extremely complicated, by a much
simpler model. For example, linear regression assumes that there is a linear
relationship between Y and X1, X2, . . . , Xp. It is unlikely that any real-life
problem truly has such a simple linear relationship, and so performing lin-
ear regression will undoubtedly result in some bias in the estimate of f . In
Figure 2.11, the true f is substantially non-linear, so no matter how many
training observations we are given, it will not be possible to produce an
accurate estimate using linear regression. In other words, linear regression
results in high bias in this example. However, in Figure 2.10 the true f
is very close to linear, and so given enough data, it should be possible for
linear regression to produce an accurate estimate. Generally, more flexible
methods result in less bias.

As a general rule, as we use more flexible methods, the variance will
increase and the bias will decrease. The relative rate of change of these
two quantities determines whether the test MSE increases or decreases. As
we increase the flexibility of a class of methods, the bias tends to initially
decrease faster than the variance increases. Consequently, the expected
test MSE declines. However, at some point increasing flexibility has little
impact on the bias but starts to significantly increase the variance. When
this happens the test MSE increases. Note that we observed this pattern
of decreasing test MSE followed by increasing test MSE in the right-hand
panels of Figures 2.9–2.11.

The three plots in Figure 2.12 illustrate Equation 2.7 for the examples in
Figures 2.9–2.11. In each case the blue solid curve represents the squared
bias, for different levels of flexibility, while the orange curve corresponds to
the variance. The horizontal dashed line represents Var(ε), the irreducible
error. Finally, the red curve, corresponding to the test set MSE, is the sum
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of these three quantities. In all three cases, the variance increases and the
bias decreases as the method’s flexibility increases. However, the flexibility
level corresponding to the optimal test MSE differs considerably among the
three data sets, because the squared bias and variance change at different
rates in each of the data sets. In the left-hand panel of Figure 2.12, the
bias initially decreases rapidly, resulting in an initial sharp decrease in the
expected test MSE. On the other hand, in the center panel of Figure 2.12
the true f is close to linear, so there is only a small decrease in bias as flex-
ibility increases, and the test MSE only declines slightly before increasing
rapidly as the variance increases. Finally, in the right-hand panel of Fig-
ure 2.12, as flexibility increases, there is a dramatic decline in bias because
the true f is very non-linear. There is also very little increase in variance
as flexibility increases. Consequently, the test MSE declines substantially
before experiencing a small increase as model flexibility increases.

The relationship between bias, variance, and test set MSE given in Equa-
tion 2.7 and displayed in Figure 2.12 is referred to as the bias-variance
trade-off. Good test set performance of a statistical learning method re- bias-variance

trade-offquires low variance as well as low squared bias. This is referred to as a
trade-off because it is easy to obtain a method with extremely low bias but
high variance (for instance, by drawing a curve that passes through every
single training observation) or a method with very low variance but high
bias (by fitting a horizontal line to the data). The challenge lies in finding
a method for which both the variance and the squared bias are low. This
trade-off is one of the most important recurring themes in this book.

In a real-life situation in which f is unobserved, it is generally not pos-
sible to explicitly compute the test MSE, bias, or variance for a statistical
learning method. Nevertheless, one should always keep the bias-variance
trade-off in mind. In this book we explore methods that are extremely
flexible and hence can essentially eliminate bias. However, this does not
guarantee that they will outperform a much simpler method such as linear
regression. To take an extreme example, suppose that the true f is linear.
In this situation linear regression will have no bias, making it very hard
for a more flexible method to compete. In contrast, if the true f is highly
non-linear and we have an ample number of training observations, then
we may do better using a highly flexible approach, as in Figure 2.11. In
Chapter 5 we discuss cross-validation, which is a way to estimate the test
MSE using the training data.

2.2.3 The Classification Setting
Thus far, our discussion of model accuracy has been focused on the regres-
sion setting. But many of the concepts that we have encountered, such
as the bias-variance trade-off, transfer over to the classification setting
with only some modifications due to the fact that yi is no longer quan-
titative. Suppose that we seek to estimate f on the basis of training obser-
vations {(x1, y1), . . . , (xn, yn)}, where now y1, . . . , yn are qualitative. The
most common approach for quantifying the accuracy of our estimate f̂ is
the training error rate, the proportion of mistakes that are made if we apply error rate
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our estimate f̂ to the training observations:

1

n

n∑

i=1

I(yi %= ŷi). (2.8)

Here ŷi is the predicted class label for the ith observation using f̂ . And
I(yi %= ŷi) is an indicator variable that equals 1 if yi %= ŷi and zero if yi = ŷi. indicator

variableIf I(yi %= ŷi) = 0 then the ith observation was classified correctly by our
classification method; otherwise it was misclassified. Hence Equation 2.8
computes the fraction of incorrect classifications.

Equation 2.8 is referred to as the training error rate because it is com- training
errorputed based on the data that was used to train our classifier. As in the

regression setting, we are most interested in the error rates that result from
applying our classifier to test observations that were not used in training.
The test error rate associated with a set of test observations of the form test error
(x0, y0) is given by

Ave (I(y0 %= ŷ0)) , (2.9)
where ŷ0 is the predicted class label that results from applying the classifier
to the test observation with predictor x0. A good classifier is one for which
the test error (2.9) is smallest.

The Bayes Classifier
It is possible to show (though the proof is outside of the scope of this
book) that the test error rate given in (2.9) is minimized, on average, by a
very simple classifier that assigns each observation to the most likely class,
given its predictor values. In other words, we should simply assign a test
observation with predictor vector x0 to the class j for which

Pr(Y = j|X = x0) (2.10)

is largest. Note that (2.10) is a conditional probability: it is the probability conditional
probabilitythat Y = j, given the observed predictor vector x0. This very simple clas-

sifier is called the Bayes classifier. In a two-class problem where there are Bayes
classifieronly two possible response values, say class 1 or class 2, the Bayes classifier

corresponds to predicting class one if Pr(Y = 1|X = x0) > 0.5, and class
two otherwise.

Figure 2.13 provides an example using a simulated data set in a two-
dimensional space consisting of predictors X1 and X2. The orange and
blue circles correspond to training observations that belong to two different
classes. For each value of X1 and X2, there is a different probability of the
response being orange or blue. Since this is simulated data, we know how
the data were generated and we can calculate the conditional probabilities
for each value of X1 and X2. The orange shaded region reflects the set of
points for which Pr(Y = orange|X) is greater than 50%, while the blue
shaded region indicates the set of points for which the probability is below
50%. The purple dashed line represents the points where the probability
is exactly 50%. This is called the Bayes decision boundary. The Bayes Bayes

decision
boundary

classifier’s prediction is determined by the Bayes decision boundary; an
observation that falls on the orange side of the boundary will be assigned
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FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange. The purple dashed line represents
the Bayes decision boundary. The orange background grid indicates the region
in which a test observation will be assigned to the orange class, and the blue
background grid indicates the region in which a test observation will be assigned
to the blue class.

to the orange class, and similarly an observation on the blue side of the
boundary will be assigned to the blue class.

The Bayes classifier produces the lowest possible test error rate, called
the Bayes error rate. Since the Bayes classifier will always choose the class Bayes error

ratefor which (2.10) is largest, the error rate will be 1−maxj Pr(Y = j|X = x0)
at X = x0. In general, the overall Bayes error rate is given by

1− E

(
max

j
Pr(Y = j|X)

)
, (2.11)

where the expectation averages the probability over all possible values of
X. For our simulated data, the Bayes error rate is 0.133. It is greater than
zero, because the classes overlap in the true population, which implies that
maxj Pr(Y = j|X = x0) < 1 for some values of x0. The Bayes error rate is
analogous to the irreducible error, discussed earlier.

K-Nearest Neighbors
In theory we would always like to predict qualitative responses using the
Bayes classifier. But for real data, we do not know the conditional distri-
bution of Y given X, and so computing the Bayes classifier is impossi-
ble. Therefore, the Bayes classifier serves as an unattainable gold standard
against which to compare other methods. Many approaches attempt to
estimate the conditional distribution of Y given X, and then classify a
given observation to the class with highest estimated probability. One such
method is the K-nearest neighbors (KNN) classifier. Given a positive in-

K-nearest
neighbors
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teger K and a test observation x0, the KNN classifier first identifies the
K points in the training data that are closest to x0, represented by N0.
It then estimates the conditional probability for class j as the fraction of
points in N0 whose response values equal j:

Pr(Y = j|X = x0) =
1

K

∑

i∈N0

I(yi = j). (2.12)

Finally, KNN classifies the test observation x0 to the class with the largest
probability from (2.12).

Figure 2.14 provides an illustrative example of the KNN approach. In
the left-hand panel, we have plotted a small training data set consisting of
six blue and six orange observations. Our goal is to make a prediction for
the point labeled by the black cross. Suppose that we choose K = 3. Then
KNN will first identify the three observations that are closest to the cross.
This neighborhood is shown as a circle. It consists of two blue points and
one orange point, resulting in estimated probabilities of 2/3 for the blue
class and 1/3 for the orange class. Hence KNN will predict that the black
cross belongs to the blue class. In the right-hand panel of Figure 2.14 we
have applied the KNN approach with K = 3 at all of the possible values for
X1 and X2, and have drawn in the corresponding KNN decision boundary.

Despite the fact that it is a very simple approach, KNN can often pro-
duce classifiers that are surprisingly close to the optimal Bayes classifier.
Figure 2.15 displays the KNN decision boundary, using K = 10, when ap-
plied to the larger simulated data set from Figure 2.13. Notice that even
though the true distribution is not known by the KNN classifier, the KNN
decision boundary is very close to that of the Bayes classifier. The test error
rate using KNN is 0.1363, which is close to the Bayes error rate of 0.1304.

The choice of K has a drastic effect on the KNN classifier obtained.
Figure 2.16 displays two KNN fits to the simulated data from Figure 2.13,
using K = 1 and K = 100. When K = 1, the decision boundary is overly
flexible and finds patterns in the data that don’t correspond to the Bayes
decision boundary. This corresponds to a classifier that has low bias but
very high variance. As K grows, the method becomes less flexible and
produces a decision boundary that is close to linear. This corresponds to
a low-variance but high-bias classifier. On this simulated data set, neither
K = 1 nor K = 100 give good predictions: they have test error rates of
0.1695 and 0.1925, respectively.

Just as in the regression setting, there is not a strong relationship be-
tween the training error rate and the test error rate. With K = 1, the
KNN training error rate is 0, but the test error rate may be quite high. In
general, as we use more flexible classification methods, the training error
rate will decline but the test error rate may not. In Figure 2.17, we have
plotted the KNN test and training errors as a function of 1/K. As 1/K in-
creases, the method becomes more flexible. As in the regression setting, the
training error rate consistently declines as the flexibility increases. However,
the test error exhibits a characteristic U-shape, declining at first (with a
minimum at approximately K = 10) before increasing again when the
method becomes excessively flexible and overfits.
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FIGURE 2.14. The KNN approach, using K = 3, is illustrated in a simple
situation with six blue observations and six orange observations. Left: a test
observation at which a predicted class label is desired is shown as a black cross.
The three closest points to the test observation are identified, and it is predicted
that the test observation belongs to the most commonly-occurring class, in this
case blue. Right: The KNN decision boundary for this example is shown in black.
The blue grid indicates the region in which a test observation will be assigned to
the blue class, and the orange grid indicates the region in which it will be assigned
to the orange class.
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FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.

In both the regression and classification settings, choosing the correct
level of flexibility is critical to the success of any statistical learning method.
The bias-variance tradeoff, and the resulting U-shape in the test error, can
make this a difficult task. In Chapter 5, we return to this topic and discuss
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FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.
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FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test
error rate (orange, 5,000 observations) on the data from Figure 2.13, as the level
of flexibility (assessed using 1/K on the log scale) increases, or equivalently as
the number of neighbors K decreases. The black dashed line indicates the Bayes
error rate. The jumpiness of the curves is due to the small size of the training
data set.

various methods for estimating test error rates and thereby choosing the
optimal level of flexibility for a given statistical learning method.
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2.3 Lab: Introduction to Python
2.3.1 Getting Started
To run the labs in this book, you will need two things:

1. An installation of Python3, which is the specific version of Python used
in the labs.

2. Access to Jupyter, a very popular Python interface that runs code
through a file called a notebook. notebook

You can download and install Python3 by following the instructions avail-
able at anaconda.com.

There are a number of ways to get access to Jupyter. Here are just a few:

1. Using Google’s Colaboratory service: colab.research.google.com/.

2. Using JupyterHub, available at jupyter.org/hub.

3. Using your own jupyter installation. Installation instructions are
available at jupyter.org/install.

Please see the Python resources page on the book website statlearning.com
for up-to-date information about getting Python and Jupyter working on
your computer.

You will need to install the ISLP package, which provides access to the
datasets and custom-built functions that we provide. Inside a macOS or
Linux terminal type pip install ISLP; this also installs most other pack-
ages needed in the labs. The Python resources page has a link to the ISLP
documentation website.

To run this lab, download the file Ch2-statlearn-lab.ipynb from the
Python resources page. Now run the following code at the command line:
jupyter lab Ch2-statlearn-lab.ipynb.

If you’re using Windows, you can use the start menu to access anaconda,
and follow the links. For example, to install ISLP and run this lab, you can
run the same code above in an anaconda shell.

2.3.2 Basic Commands
In this lab, we will introduce some simple Python commands. For more
resources about Python in general, readers may want to consult the tutorial
at docs.python.org/3/tutorial/.

Like most programming languages, Python uses functions to perform op- functionerations. To run a function called fun, we type fun(input1,input2), where
the inputs (or arguments) input1 and input2 tell Python how to run the
function. A function can have any number of inputs. For example, the argument
print() function outputs a text representation of all of its arguments to print()the console.

In [1]: print('fit a model with', 11, 'variables')

http://anaconda.com
https://colab.research.google.com/
https://jupyter.org/hub
https://jupyter.org/install
https://www.statlearning.com
https://docs.python.org/3/tutorial/
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fit a model with 11 variables

The following command will provide information about the print() func-
tion.

In [2]: print?

Adding two integers in Python is pretty intuitive.

In [3]: 3 + 5

Out[3]: 8

In Python, textual data is handled using strings. For instance, "hello" and string
'hello' are strings. We can concatenate them using the addition + symbol.

In [4]: "hello" + " " + "world"

Out[4]: 'hello world'

A string is actually a type of sequence: this is a generic term for an ordered sequence
list. The three most important types of sequences are lists, tuples, and
strings. We introduce lists now.

The following command instructs Python to join together the numbers 3,
4, and 5, and to save them as a list named x. When we type x, it gives us listback the list.

In [5]: x = [3, 4, 5]
x

Out[5]: [3, 4, 5]

Note that we used the brackets [] to construct this list.
We will often want to add two sets of numbers together. It is reasonable

to try the following code, though it will not produce the desired results.

In [6]: y = [4, 9, 7]
x + y

Out[6]: [3, 4, 5, 4, 9, 7]

The result may appear slightly counterintuitive: why did Python not add
the entries of the lists element-by-element? In Python, lists hold arbitrary
objects, and are added using concatenation. In fact, concatenation is the concatenat-

ionbehavior that we saw earlier when we entered "hello" + " " + "world".
This example reflects the fact that Python is a general-purpose program-

ming language. Much of Python’s data-specific functionality comes from
other packages, notably numpy and pandas. In the next section, we will intro-
duce the numpy package. See docs.scipy.org/doc/numpy/user/quickstart.html
for more information about numpy.

https://docs.scipy.org/doc/numpy/user/quickstart.html
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2.3.3 Introduction to Numerical Python
As mentioned earlier, this book makes use of functionality that is contained
in the numpy library, or package. A package is a collection of modules that numpy

packageare not necessarily included in the base Python distribution. The name numpy
is an abbreviation for numerical Python.

To access numpy, we must first import it. import
In [7]: import numpy as np

In the previous line, we named the numpy module np; an abbreviation for moduleeasier referencing.
In numpy, an array is a generic term for a multidimensional set of numbers. array

We use the np.array() function to define x and y, which are one-dimensional np.array()arrays, i.e. vectors.
In [8]: x = np.array([3, 4, 5])

y = np.array([4, 9, 7])

Note that if you forgot to run the import numpy as np command earlier,
then you will encounter an error in calling the np.array() function in
the previous line. The syntax np.array() indicates that the function be-
ing called is part of the numpy package, which we have abbreviated as np.

Since x and y have been defined using np.array(), we get a sensible result
when we add them together. Compare this to our results in the previous
section, when we tried to add two lists without using numpy.

In [9]: x + y

Out[9]: array([ 7, 13, 12])

In numpy, matrices are typically represented as two-dimensional arrays,
and vectors as one-dimensional arrays.1 We can create a two-dimensional
array as follows.

In [10]: x = np.array([[1, 2], [3, 4]])
x

Out[10]: array([[1, 2],
[3, 4]])

The object x has several attributes, or associated objects. To access an attributeattribute of x, we type x.attribute, where we replace attribute with the
name of the attribute. For instance, we can access the ndim attribute of x ndimas follows.

In [11]: x.ndim

Out[11]: 2

The output indicates that x is a two-dimensional array. Similarly, x.dtype
is the data type attribute of the object x. This indicates that x is comprised data typeof 64-bit integers:

1While it is also possible to create matrices using np.matrix(), we will use
np.array() throughout the labs in this book.
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In [12]: x.dtype

Out[12]: dtype('int64')

Why is x comprised of integers? This is because we created x by passing
in exclusively integers to the np.array() function. If we had passed in any
decimals, then we would have obtained an array of floating point numbers floating

point(i.e. real-valued numbers).

In [13]: np.array([[1, 2], [3.0, 4]]).dtype

Out[13]: dtype('float64')

Typing fun? will cause Python to display documentation associated with
the function fun, if it exists. We can try this for np.array().

In [14]: np.array?

This documentation indicates that we could create a floating point array
by passing a dtype argument into np.array(). dtype

In [15]: np.array([[1, 2], [3, 4]], float).dtype

Out[15]: dtype('float64')

The array x is two-dimensional. We can find out the number of rows and
columns by looking at its shape attribute. shape

In [16]: x.shape

Out[16]: (2, 2)

A method is a function that is associated with an object. For instance, methodgiven an array x, the expression x.sum() sums all of its elements, using the
sum() method for arrays. The call x.sum() automatically provides x as the .sum()first argument to its sum() method.

In [17]: x = np.array([1, 2, 3, 4])
x.sum()

Out[17]: 10

We could also sum the elements of x by passing in x as an argument to the
np.sum() function. np.sum()

In [18]: x = np.array([1, 2, 3, 4])
np.sum(x)

Out[18]: 10

As another example, the reshape() method returns a new array with the .reshape()same elements as x, but a different shape. We do this by passing in a tuple tuple
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in our call to reshape(), in this case (2, 3). This tuple specifies that we
would like to create a two-dimensional array with 2 rows and 3 columns.2

In what follows, the \n character creates a new line.
In [19]: x = np.array([1, 2, 3, 4, 5, 6])

print('beginning x:\n', x)
x_reshape = x.reshape((2, 3))
print('reshaped x:\n', x_reshape)

beginning x:
[1 2 3 4 5 6]

reshaped x:
[[1 2 3]
[4 5 6]]

The previous output reveals that numpy arrays are specified as a sequence
of rows. This is called row-major ordering, as opposed to column-major
ordering.

Python (and hence numpy) uses 0-based indexing. This means that to
access the top left element of x_reshape, we type in x_reshape[0,0].

In [20]: x_reshape[0, 0]

Out[20]: 1

Similarly, x_reshape[1,2] yields the element in the second row and the
third column of x_reshape.

In [21]: x_reshape[1, 2]

Out[21]: 6

Similarly, x[2] yields the third entry of x.
Now, let’s modify the top left element of x_reshape. To our surprise, we

discover that the first element of x has been modified as well!
In [22]: print('x before we modify x_reshape:\n', x)

print('x_reshape before we modify x_reshape:\n', x_reshape)
x_reshape[0, 0] = 5
print('x_reshape after we modify its top left element:\n',

x_reshape)
print('x after we modify top left element of x_reshape:\n', x)

Out[22]: x before we modify x_reshape:
[1 2 3 4 5 6]

x_reshape before we modify x_reshape:
[[1 2 3]
[4 5 6]]

x_reshape after we modify its top left element:
[[5 2 3]

2Like lists, tuples represent a sequence of objects. Why do we need more than one way
to create a sequence? There are a few differences between tuples and lists, but perhaps
the most important is that elements of a tuple cannot be modified, whereas elements of
a list can be.
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[4 5 6]]
x after we modify top left element of x_reshape:
[5 2 3 4 5 6]

Modifying x_reshape also modified x because the two objects occupy the
same space in memory.

We just saw that we can modify an element of an array. Can we also mod-
ify a tuple? It turns out that we cannot — and trying to do so introduces
an exception, or error. exception

In [23]: my_tuple = (3, 4, 5)
my_tuple[0] = 2

TypeError: 'tuple' object does not support item assignment

We now briefly mention some attributes of arrays that will come in handy.
An array’s shape attribute contains its dimension; this is always a tuple.
The ndim attribute yields the number of dimensions, and T provides its
transpose.

In [24]: x_reshape.shape, x_reshape.ndim, x_reshape.T

Out[24]: ((2, 3),
2,
array([[5, 4],

[2, 5],
[3, 6]]))

Notice that the three individual outputs (2,3), 2, and array([[5, 4],[2,
5], [3,6]]) are themselves output as a tuple.

We will often want to apply functions to arrays. For instance, we can
compute the square root of the entries using the np.sqrt() function: np.sqrt()

In [25]: np.sqrt(x)

Out[25]: array([2.24, 1.41, 1.73, 2., 2.24, 2.45])

We can also square the elements:
In [26]: x**2

Out[26]: array([25, 4, 9, 16, 25, 36])

We can compute the square roots using the same notation, raising to the
power of 1/2 instead of 2.

In [27]: x**0.5

Out[27]: array([2.24, 1.41, 1.73, 2., 2.24, 2.45])

Throughout this book, we will often want to generate random data. The
np.random.normal() function generates a vector of random normal variables. np.random.

normal()We can learn more about this function by looking at the help page, via a call
to np.random.normal?. The first line of the help page reads normal(loc=0.0,
scale=1.0, size=None). This signature line tells us that the function’s ar- signature
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guments are loc, scale, and size. These are keyword arguments, which keywordmeans that when they are passed into the function, they can be referred
to by name (in any order).3 By default, this function will generate random
normal variable(s) with mean (loc) 0 and standard deviation (scale) 1; fur-
thermore, a single random variable will be generated unless the argument
to size is changed.

We now generate 50 independent random variables from a N(0, 1) dis-
tribution.

In [28]: x = np.random.normal(size=50)
x

Out[28]: array([-1.19, 0.41, 0.9 , -0.44, -0.9 , -0.38, 0.13, 1.87,
-0.35, 1.16, 0.79, -0.97, -1.21, 0.06, -1.62, -0.6 ,
-0.77, -2.12, 0.38, -1.22, -0.06, -1.97, -1.74, -0.56,
1.7 , -0.95, 0.56, 0.35, 0.87, 0.88, -1.66, -0.32,

-0.3 , -1.36, 0.92, -0.31, 1.28, -1.94, 1.07, 0.07,
0.79, -0.46, 2.19, -0.27, -0.64, 0.85, 0.13, 0.46,

-0.09, 0.7 ])

We create an array y by adding an independent N(50, 1) random variable
to each element of x.

In [29]: y = x + np.random.normal(loc=50, scale=1, size=50)

The np.corrcoef() function computes the correlation matrix between x and np.corrcoef()
y. The off-diagonal elements give the correlation between x and y.

In [30]: np.corrcoef(x, y)

Out[30]: array([[1. , 0.69],
[0.69, 1. ]])

If you’re following along in your own Jupyter notebook, then you probably
noticed that you got a different set of results when you ran the past few
commands. In particular, each time we call np.random.normal(), we will get
a different answer, as shown in the following example.

In [31]: print(np.random.normal(scale=5, size=2))
print(np.random.normal(scale=5, size=2))

Out[31]: [4.28 2.59]
[4.62 -2.54]

In order to ensure that our code provides exactly the same results each
time it is run, we can set a random seed using the np.random.default_rng() random seed

np.random.
default_rng()

function. This function takes an arbitrary, user-specified integer argument.
If we set a random seed before generating random data, then re-running
our code will yield the same results. The object rng has essentially all the

3Python also uses positional arguments. Positional arguments do not need to use a
keyword. To see an example, type in np.sum?. We see that a is a positional argument,
i.e. this function assumes that the first unnamed argument that it receives is the array
to be summed. By contrast, axis and dtype are keyword arguments: the position in
which these arguments are entered into np.sum() does not matter.
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random number generating methods found in np.random. Hence, to generate
normal data we use rng.normal().

In [32]: rng = np.random.default_rng(1303)
print(rng.normal(scale=5, size=2))
rng2 = np.random.default_rng(1303)
print(rng2.normal(scale=5, size=2))

Out[32]: [4.09 -1.07 ]
[4.09 -1.07 ]

Throughout the labs in this book, we use np.random.default_rng() when-
ever we perform calculations involving random quantities within numpy. In
principle, this should enable the reader to exactly reproduce the stated
results. However, as new versions of numpy become available, it is possible
that some small discrepancies may occur between the output in the labs
and the output from numpy.

The np.mean(), np.var(), and np.std() functions can be used to compute np.mean()
np.var()
np.std()

the mean, variance, and standard deviation of arrays. These functions are
also available as methods on the arrays.

In [33]: rng = np.random.default_rng(3)
y = rng.standard_normal(10)
np.mean(y), y.mean()

Out[33]: (-0.11, -0.11)

In [34]: np.var(y), y.var(), np.mean((y - y.mean())**2)

Out[34]: (2.72, 2.72, 2.72)

Notice that by default np.var() divides by the sample size n rather than
n− 1; see the ddof argument in np.var?.

In [35]: np.sqrt(np.var(y)), np.std(y)

Out[35]: (1.65, 1.65)

The np.mean(), np.var(), and np.std() functions can also be applied to the
rows and columns of a matrix. To see this, we construct a 10× 3 matrix of
N(0, 1) random variables, and consider computing its row sums.

In [36]: X = rng.standard_normal((10, 3))
X

Out[36]: array([[ 0.23, -0.35, -0.28],
[-0.67, -1.06, -0.39],
[ 0.48, -0.24, 0.96],
[-0.2 , 0.02, 1.55],
[ 0.55, -0.51, -0.18],
[ 0.54, 1.94, -0.27],
[-0.24, 1. , -0.89],
[-0.29, 0.88, 0.58],
[ 0.09, 0.67, -2.83],
[ 1.02, -0.96, -1.67]])
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Since arrays are row-major ordered, the first axis, i.e. axis=0, refers to its
rows. We pass this argument into the mean() method for the object X. .mean()

In [37]: X.mean(axis=0)

Out[37]: array([0.15, 0.14, -0.34])

The following yields the same result.
In [38]: X.mean(0)

Out[38]: array([0.15, 0.14, -0.34])

2.3.4 Graphics
In Python, common practice is to use the library matplotlib for graphics. matplotlibHowever, since Python was not written with data analysis in mind, the no-
tion of plotting is not intrinsic to the language. We will use the subplots()
function from matplotlib.pyplot to create a figure and the axes onto which
we plot our data. For many more examples of how to make plots in Python,
readers are encouraged to visit matplotlib.org/stable/gallery/.

In matplotlib, a plot consists of a figure and one or more axes. You can figure
axesthink of the figure as the blank canvas upon which one or more plots will

be displayed: it is the entire plotting window. The axes contain important
information about each plot, such as its x- and y-axis labels, title, and
more. (Note that in matplotlib, the word axes is not the plural of axis: a
plot’s axes contains much more information than just the x-axis and the
y-axis.)

We begin by importing the subplots() function from matplotlib. We subplots()use this function throughout when creating figures. The function returns
a tuple of length two: a figure object as well as the relevant axes object.
We will typically pass figsize as a keyword argument. Having created our
axes, we attempt our first plot using its plot() method. To learn more .plot()about it, type ax.plot?.

In [39]: from matplotlib.pyplot import subplots
fig, ax = subplots(figsize=(8, 8))
x = rng.standard_normal(100)
y = rng.standard_normal(100)
ax.plot(x, y);

We pause here to note that we have unpacked the tuple of length two re-
turned by subplots() into the two distinct variables fig and ax. Unpacking
is typically preferred to the following equivalent but slightly more verbose
code:

In [40]: output = subplots(figsize=(8, 8))
fig = output[0]
ax = output[1]

We see that our earlier cell produced a line plot, which is the default.
To create a scatterplot, we provide an additional argument to ax.plot(),
indicating that circles should be displayed.

https://matplotlib.org/stable/gallery/index.html
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In [41]: fig, ax = subplots(figsize=(8, 8))
ax.plot(x, y, 'o');

Different values of this additional argument can be used to produce different
colored lines as well as different linestyles.

As an alternative, we could use the ax.scatter() function to create a .scatter()scatterplot.
In [42]: fig, ax = subplots(figsize=(8, 8))

ax.scatter(x, y, marker='o');

Notice that in the code blocks above, we have ended the last line with a
semicolon. This prevents ax.plot(x, y) from printing text to the notebook.
However, it does not prevent a plot from being produced. If we omit the
trailing semi-colon, then we obtain the following output:

In [43]: fig, ax = subplots(figsize=(8, 8))
ax.scatter(x, y, marker='o')

Out[43]: <matplotlib.collections.PathCollection at 0x7fb3d9c8f310>
Figure(432x288)

In what follows, we will use trailing semicolons whenever the text that
would be output is not germane to the discussion at hand.

To label our plot, we make use of the set_xlabel(), set_ylabel(), and .set_xlabel()
.set_ylabel()set_title() methods of ax.
.set_title()In [44]: fig, ax = subplots(figsize=(8, 8))

ax.scatter(x, y, marker='o')
ax.set_xlabel("this is the x-axis")
ax.set_ylabel("this is the y-axis")
ax.set_title("Plot of X vs Y");

Having access to the figure object fig itself means that we can go in and
change some aspects and then redisplay it. Here, we change the size from
(8, 8) to (12, 3).
fig.set_size_inches(12,3)
fig

Occasionally we will want to create several plots within a figure. This
can be achieved by passing additional arguments to subplots(). Below, we
create a 2 × 3 grid of plots in a figure of size determined by the figsize
argument. In such situations, there is often a relationship between the
axes in the plots. For example, all plots may have a common x-axis. The
subplots() function can automatically handle this situation when passed
the keyword argument sharex=True. The axes object below is an array
pointing to different plots in the figure.

In [45]: fig, axes = subplots(nrows=2,
ncols=3,
figsize=(15, 5))

We now produce a scatter plot with 'o' in the second column of the first
row and a scatter plot with '+' in the third column of the second row.
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In [46]: axes[0,1].plot(x, y, 'o')
axes[1,2].scatter(x, y, marker='+')
fig

Type subplots? to learn more about subplots().
To save the output of fig, we call its savefig() method. The argument .savefig()

dpi is the dots per inch, used to determine how large the figure will be in
pixels.

In [47]: fig.savefig("Figure.png", dpi=400)
fig.savefig("Figure.pdf", dpi=200);

We can continue to modify fig using step-by-step updates; for example,
we can modify the range of the x-axis, re-save the figure, and even re-display
it.

In [48]: axes[0,1].set_xlim([-1,1])
fig.savefig("Figure_updated.jpg")
fig

We now create some more sophisticated plots. The ax.contour() method .contour()produces a contour plot in order to represent three-dimensional data, similar contour plotto a topographical map. It takes three arguments:

• A vector of x values (the first dimension),

• A vector of y values (the second dimension), and

• A matrix whose elements correspond to the z value (the third dimen-
sion) for each pair of (x,y) coordinates.

To create x and y, we’ll use the command np.linspace(a, b, n), which np.linspace()returns a vector of n numbers starting at a and ending at b.

In [49]: fig, ax = subplots(figsize=(8, 8))
x = np.linspace(-np.pi, np.pi, 50)
y = x
f = np.multiply.outer(np.cos(y), 1 / (1 + x**2))
ax.contour(x, y, f);

We can increase the resolution by adding more levels to the image.

In [50]: fig, ax = subplots(figsize=(8, 8))
ax.contour(x, y, f, levels=45);

To fine-tune the output of the ax.contour() function, take a look at the
help file by typing ?plt.contour.

The ax.imshow() method is similar to ax.contour(), except that it pro- .imshow()duces a color-coded plot whose colors depend on the z value. This is known
as a heatmap, and is sometimes used to plot temperature in weather fore- heatmapcasts.

In [51]: fig, ax = subplots(figsize=(8, 8))
ax.imshow(f);
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2.3.5 Sequences and Slice Notation
As seen above, the function np.linspace() can be used to create a sequence
of numbers.

In [52]: seq1 = np.linspace(0, 10, 11)
seq1

Out[52]: array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])

The function np.arange() returns a sequence of numbers spaced out by np.arange()
step. If step is not specified, then a default value of 1 is used. Let’s create
a sequence that starts at 0 and ends at 10.

In [53]: seq2 = np.arange(0, 10)
seq2

Out[53]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Why isn’t 10 output above? This has to do with slice notation in Python. sliceSlice notation is used to index sequences such as lists, tuples and arrays.
Suppose we want to retrieve the fourth through sixth (inclusive) entries of
a string. We obtain a slice of the string using the indexing notation [3:6].

In [54]: "hello world"[3:6]

Out[54]: 'lo '

In the code block above, the notation 3:6 is shorthand for slice(3,6) when
used inside [].

In [55]: "hello world"[slice(3,6)]

Out[55]: 'lo '

You might have expected slice(3,6) to output the fourth through seventh
characters in the text string (recalling that Python begins its indexing at
zero), but instead it output the fourth through sixth. This also explains
why the earlier np.arange(0, 10) command output only the integers from
0 to 9. See the documentation slice? for useful options in creating slices.

2.3.6 Indexing Data
To begin, we create a two-dimensional numpy array.

In [56]: A = np.array(np.arange(16)).reshape((4, 4))
A

Out[56]: array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

Typing A[1,2] retrieves the element corresponding to the second row and
third column. (As usual, Python indexes from 0.)
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In [57]: A[1,2]

Out[57]: 6

The first number after the open-bracket symbol [ refers to the row, and
the second number refers to the column.

Indexing Rows, Columns, and Submatrices
To select multiple rows at a time, we can pass in a list specifying our
selection. For instance, [1,3] will retrieve the second and fourth rows:

In [58]: A[[1,3]]

Out[58]: array([[ 4, 5, 6, 7],
[12, 13, 14, 15]])

To select the first and third columns, we pass in [0,2] as the second ar-
gument in the square brackets. In this case we need to supply the first
argument : which selects all rows.

In [59]: A[:,[0,2]]

Out[59]: array([[ 0, 2],
[ 4, 6],
[ 8, 10],
[12, 14]])

Now, suppose that we want to select the submatrix made up of the second
and fourth rows as well as the first and third columns. This is where index-
ing gets slightly tricky. It is natural to try to use lists to retrieve the rows
and columns:

In [60]: A[[1,3],[0,2]]

Out[60]: array([ 4, 14])

Oops — what happened? We got a one-dimensional array of length two
identical to

In [61]: np.array([A[1,0],A[3,2]])

Out[61]: array([ 4, 14])

Similarly, the following code fails to extract the submatrix comprised of
the second and fourth rows and the first, third, and fourth columns:

In [62]: A[[1,3],[0,2,3]]

IndexError: shape mismatch: indexing arrays could not be broadcast
together with shapes (2,) (3,)
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We can see what has gone wrong here. When supplied with two indexing
lists, the numpy interpretation is that these provide pairs of i, j indices for
a series of entries. That is why the pair of lists must have the same length.
However, that was not our intent, since we are looking for a submatrix.

One easy way to do this is as follows. We first create a submatrix by
subsetting the rows of A, and then on the fly we make a further submatrix
by subsetting its columns.

In [63]: A[[1,3]][:,[0,2]]

Out[63]: array([[ 4, 6],
[12, 14]])

There are more efficient ways of achieving the same result.
The convenience function np.ix_() allows us to extract a submatrix using convenience

function
np.ix_()

lists, by creating an intermediate mesh object.

mesh
In [64]: idx = np.ix_([1,3],[0,2,3])

A[idx]

Out[64]: array([[ 4, 6, 7],
[12, 14, 15]])

Alternatively, we can subset matrices efficiently using slices. The slice
1:4:2 captures the second and fourth items of a sequence, while the slice
0:3:2 captures the first and third items (the third element in a slice se-
quence is the step size).

In [65]: A[1:4:2,0:3:2]

Out[65]: array([[ 4, 6],
[12, 14]])

Why are we able to retrieve a submatrix directly using slices but not using
lists? Its because they are different Python types, and are treated differently
by numpy. Slices can be used to extract objects from arbitrary sequences,
such as strings, lists, and tuples, while the use of lists for indexing is more
limited.

Boolean Indexing
In numpy, a Boolean is a type that equals either True or False (also rep- Booleanresented as 1 and 0, respectively). The next line creates a vector of 0’s,
represented as Booleans, of length equal to the first dimension of A.

In [66]: keep_rows = np.zeros(A.shape[0], bool)
keep_rows

Out[66]: array([False, False, False, False])

We now set two of the elements to True.
In [67]: keep_rows[[1,3]] = True

keep_rows
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Out[67]: array([False, True, False, True])

Note that the elements of keep_rows, when viewed as integers, are the same
as the values of np.array([0,1,0,1]). Below, we use == to verify their equal-
ity. When applied to two arrays, the == operation is applied elementwise.

In [68]: np.all(keep_rows == np.array([0,1,0,1]))

Out[68]: True

(Here, the function np.all() has checked whether all entries of an array np.all()are True. A similar function, np.any(), can be used to check whether any
np.any()entries of an array are True.)

However, even though np.array([0,1,0,1]) and keep_rows are equal ac-
cording to ==, they index different sets of rows! The former retrieves the
first, second, first, and second rows of A.

In [69]: A[np.array([0,1,0,1])]

Out[69]: array([[0, 1, 2, 3],
[4, 5, 6, 7],
[0, 1, 2, 3],
[4, 5, 6, 7]])

By contrast, keep_rows retrieves only the second and fourth rows of A —
i.e. the rows for which the Boolean equals TRUE.

In [70]: A[keep_rows]

Out[70]: array([[ 4, 5, 6, 7],
[12, 13, 14, 15]])

This example shows that Booleans and integers are treated differently by
numpy.

We again make use of the np.ix_() function to create a mesh containing
the second and fourth rows, and the first, third, and fourth columns. This
time, we apply the function to Booleans, rather than lists.

In [71]: keep_cols = np.zeros(A.shape[1], bool)
keep_cols[[0, 2, 3]] = True
idx_bool = np.ix_(keep_rows, keep_cols)
A[idx_bool]

Out[71]: array([[ 4, 6, 7],
[12, 14, 15]])

We can also mix a list with an array of Booleans in the arguments to
np.ix_():

In [72]: idx_mixed = np.ix_([1,3], keep_cols)
A[idx_mixed]

Out[72]: array([[ 4, 6, 7],
[12, 14, 15]])

For more details on indexing in numpy, readers are referred to the numpy
tutorial mentioned earlier.
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2.3.7 Loading Data
Data sets often contain different types of data, and may have names as-
sociated with the rows or columns. For these reasons, they typically are
best accommodated using a data frame. We can think of a data frame as data framea sequence of arrays of identical length; these are the columns. Entries in
the different arrays can be combined to form a row. The pandas library can
be used to create and work with data frame objects.

Reading in a Data Set
The first step of most analyses involves importing a data set into Python.
Before attempting to load a data set, we must make sure that Python knows
where to find the file containing it. If the file is in the same location as this
notebook file, then we are all set. Otherwise, the command os.chdir() can os.chdir()be used to change directory. (You will need to call import os before calling
os.chdir().)

We will begin by reading in Auto.csv, available on the book website. This
is a comma-separated file, and can be read in using pd.read_csv(): pd.read_csv()

In [73]: import pandas as pd
Auto = pd.read_csv('Auto.csv')
Auto

The book website also has a whitespace-delimited version of this data,
called Auto.data. This can be read in as follows:

In [74]: Auto = pd.read_csv('Auto.data', delim_whitespace=True)

Both Auto.csv and Auto.data are simply text files. Before loading data into
Python, it is a good idea to view it using a text editor or other software,
such as Microsoft Excel.

We now take a look at the column of Auto corresponding to the variable
horsepower:

In [75]: Auto['horsepower']

Out[75]: 0 130.0
1 165.0
2 150.0
3 150.0
4 140.0

...
392 86.00
393 52.00
394 84.00
395 79.00
396 82.00
Name: horsepower, Length: 397, dtype: object

We see that the dtype of this column is object. It turns out that all values
of the horsepower column were interpreted as strings when reading in the
data. We can find out why by looking at the unique values.

In [76]: np.unique(Auto['horsepower'])
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To save space, we have omitted the output of the previous code block. We
see the culprit is the value ?, which is being used to encode missing values.

To fix the problem, we must provide pd.read_csv() with an argument
called na_values. Now, each instance of ? in the file is replaced with the
value np.nan, which means not a number:

In [77]: Auto = pd.read_csv('Auto.data',
na_values=['?'],
delim_whitespace=True)

Auto['horsepower'].sum()

Out[77]: 40952.0

The Auto.shape attribute tells us that the data has 397 observations, or
rows, and nine variables, or columns.

In [78]: Auto.shape

Out[78]: (397, 9)

There are various ways to deal with missing data. In this case, since
only five of the rows contain missing observations, we choose to use the
Auto.dropna() method to simply remove these rows. .dropna()

In [79]: Auto_new = Auto.dropna()
Auto_new.shape

Out[79]: (392, 9)

Basics of Selecting Rows and Columns
We can use Auto.columns to check the variable names.

In [80]: Auto = Auto_new # overwrite the previous value
Auto.columns

Out[80]: Index(['mpg', 'cylinders', 'displacement', 'horsepower',
'weight', 'acceleration', 'year', 'origin', 'name'],
dtype='object')

Accessing the rows and columns of a data frame is similar, but not iden-
tical, to accessing the rows and columns of an array. Recall that the first
argument to the [] method is always applied to the rows of the array. Sim-
ilarly, passing in a slice to the [] method creates a data frame whose rows
are determined by the slice:

In [81]: Auto[:3]

Out[81]: mpg cylinders displacement horsepower weight ...
0 18.0 8 307.0 130.0 3504.0 ...
1 15.0 8 350.0 165.0 3693.0 ...
2 18.0 8 318.0 150.0 3436.0 ...

Similarly, an array of Booleans can be used to subset the rows:
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In [82]: idx_80 = Auto['year'] > 80
Auto[idx_80]

However, if we pass in a list of strings to the [] method, then we obtain a
data frame containing the corresponding set of columns.

In [83]: Auto[['mpg', 'horsepower']]

Out[83]: mpg horsepower
0 18.0 130.0
1 15.0 165.0
2 18.0 150.0
3 16.0 150.0
4 17.0 140.0
... ... ...
392 27.0 86.0
393 44.0 52.0
394 32.0 84.0
395 28.0 79.0
396 31.0 82.0
392 rows x 2 columns

Since we did not specify an index column when we loaded our data frame,
the rows are labeled using integers 0 to 396.

In [84]: Auto.index

Out[84]: Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
387, 388, 389, 390, 391, 392, 393, 394, 395, 396],

dtype='int64', length=392)

We can use the set_index() method to re-name the rows using the contents .set_index()of Auto['name'].
In [85]: Auto_re = Auto.set_index('name')

Auto_re

Out[85]: mpg cylinders displacement ...
name

chevrolet chevelle malibu 18.0 8 307.0 ...
buick skylark 32 15.0 8 350.0 ...

plymouth satellite 18.0 8 318.0 ...
amc rebel sst 16.0 8 304.0 ...

In [86]: Auto_re.columns

Out[86]: Index(['mpg', 'cylinders', 'displacement', 'horsepower',
'weight', 'acceleration', 'year', 'origin'],

dtype='object')

We see that the column 'name' is no longer there.
Now that the index has been set to name, we can access rows of the data

frame by name using the loc[] method of Auto: .loc[]
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In [87]: rows = ['amc rebel sst', 'ford torino']
Auto_re.loc[rows]

Out[87]: mpg cylinders displacement horsepower ...
name

amc rebel sst 16.0 8 304.0 150.0 ...
ford torino 17.0 8 302.0 140.0 ...

As an alternative to using the index name, we could retrieve the 4th and
5th rows of Auto using the iloc[] method: .iloc[]

In [88]: Auto_re.iloc[[3,4]]

We can also use it to retrieve the 1st, 3rd and and 4th columns of Auto_re:
In [89]: Auto_re.iloc[:,[0,2,3]]

We can extract the 4th and 5th rows, as well as the 1st, 3rd and 4th
columns, using a single call to iloc[]:

In [90]: Auto_re.iloc[[3,4],[0,2,3]]

Out[90]: mpg displacement horsepower
name

amc rebel sst 16.0 304.0 150.0
ford torino 17.0 302.0 140.0

Index entries need not be unique: there are several cars in the data frame
named ford galaxie 500.

In [91]: Auto_re.loc['ford galaxie 500', ['mpg', 'origin']]

Out[91]: mpg origin
name

ford galaxie 500 15.0 1
ford galaxie 500 14.0 1
ford galaxie 500 14.0 1

More on Selecting Rows and Columns
Suppose now that we want to create a data frame consisting of the weight
and origin of the subset of cars with year greater than 80 — i.e. those
built after 1980. To do this, we first create a Boolean array that indexes
the rows. The loc[] method allows for Boolean entries as well as strings:

In [92]: idx_80 = Auto_re['year'] > 80
Auto_re.loc[idx_80, ['weight', 'origin']]

To do this more concisely, we can use an anonymous function called a
lambda: lambda

In [93]: Auto_re.loc[lambda df: df['year'] > 80, ['weight', 'origin']]

The lambda call creates a function that takes a single argument, here df,
and returns df['year']>80. Since it is created inside the loc[] method for
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the dataframe Auto_re, that dataframe will be the argument supplied. As
another example of using a lambda, suppose that we want all cars built after
1980 that achieve greater than 30 miles per gallon:

In [94]: Auto_re.loc[lambda df: (df['year'] > 80) & (df['mpg'] > 30),
['weight', 'origin']

]

The symbol & computes an element-wise and operation. As another ex-
ample, suppose that we want to retrieve all Ford and Datsun cars with
displacement less than 300. We check whether each name entry contains
either the string ford or datsun using the str.contains() method of the .str.

contains()index attribute of of the dataframe:
In [95]: Auto_re.loc[lambda df: (df['displacement'] < 300)

& (df.index.str.contains('ford')
| df.index.str.contains('datsun')),

['weight', 'origin']
]

Here, the symbol | computes an element-wise or operation.
In summary, a powerful set of operations is available to index the rows

and columns of data frames. For integer based queries, use the iloc[]
method. For string and Boolean selections, use the loc[] method. For
functional queries that filter rows, use the loc[] method with a function
(typically a lambda) in the rows argument.

2.3.8 For Loops
A for loop is a standard tool in many languages that repeatedly evaluates forsome chunk of code while varying different values inside the code. For
example, suppose we loop over elements of a list and compute their sum.

In [96]: total = 0
for value in [3,2,19]:

total += value
print('Total is: {0}'.format(total))

Total is: 24

The indented code beneath the line with the for statement is run for each
value in the sequence specified in the for statement. The loop ends either
when the cell ends or when code is indented at the same level as the original
for statement. We see that the final line above which prints the total is
executed only once after the for loop has terminated. Loops can be nested
by additional indentation.

In [97]: total = 0
for value in [2,3,19]:

for weight in [3, 2, 1]:
total += value * weight

print('Total is: {0}'.format(total))

Total is: 144
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Above, we summed over each combination of value and weight. We also
took advantage of the increment notation in Python: the expression a += b incrementis equivalent to a = a + b. Besides being a convenient notation, this can
save time in computationally heavy tasks in which the intermediate value
of a+b need not be explicitly created.

Perhaps a more common task would be to sum over (value, weight)
pairs. For instance, to compute the average value of a random variable
that takes on possible values 2, 3 or 19 with probability 0.2, 0.3, 0.5 respec-
tively we would compute the weighted sum. Tasks such as this can often be
accomplished using the zip() function that loops over a sequence of tuples. zip()

In [98]: total = 0
for value, weight in zip([2,3,19],

[0.2,0.3,0.5]):
total += weight * value

print('Weighted average is: {0}'.format(total))

Weighted average is: 10.8

String Formatting
In the code chunk above we also printed a string displaying the total.
However, the object total is an integer and not a string. Inserting the
value of something into a string is a common task, made simple using some
of the powerful string formatting tools in Python. Many data cleaning tasks
involve manipulating and programmatically producing strings.

For example we may want to loop over the columns of a data frame
and print the percent missing in each column. Let’s create a data frame
D with columns in which 20% of the entries are missing i.e. set to np.nan. np.nan
We’ll create the values in D from a normal distribution with mean 0 and
variance 1 using rng.standard_normal() and then overwrite some random
entries using rng.choice().

In [99]: rng = np.random.default_rng(1)
A = rng.standard_normal((127, 5))
M = rng.choice([0, np.nan], p=[0.8,0.2], size=A.shape)
A += M
D = pd.DataFrame(A, columns=['food',

'bar',
'pickle',
'snack',
'popcorn'])

D[:3]

Out[99]: food bar pickle snack popcorn
0 0.345584 0.821618 0.330437 -1.303157 NaN
1 NaN -0.536953 0.581118 0.364572 0.294132
2 NaN 0.546713 NaN -0.162910 -0.482119

In [100]: for col in D.columns:
template = 'Column "{0}" has {1:.2%} missing values'
print(template.format(col,

np.isnan(D[col]).mean()))
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Column "food" has 16.54% missing values
Column "bar" has 25.98% missing values
Column "pickle" has 29.13% missing values
Column "snack" has 21.26% missing values
Column "popcorn" has 22.83% missing values

We see that the template.format() method expects two arguments {0} and
{1:.2%}, and the latter includes some formatting information. In particular,
it specifies that the second argument should be expressed as a percent with
two decimal digits.

The reference docs.python.org/3/library/string.html includes many help-
ful and more complex examples.

2.3.9 Additional Graphical and Numerical Summaries
We can use the ax.plot() or ax.scatter() functions to display the quan-
titative variables. However, simply typing the variable names will produce
an error message, because Python does not know to look in the Auto data
set for those variables.

In [101]: fig, ax = subplots(figsize=(8, 8))
ax.plot(horsepower, mpg, 'o');

NameError: name 'horsepower' is not defined

We can address this by accessing the columns directly:
In [102]: fig, ax = subplots(figsize=(8, 8))

ax.plot(Auto['horsepower'], Auto['mpg'], 'o');

Alternatively, we can use the plot() method with the call Auto.plot(). Us- .plot()ing this method, the variables can be accessed by name. The plot methods
of a data frame return a familiar object: an axes. We can use it to update
the plot as we did previously:

In [103]: ax = Auto.plot.scatter('horsepower', 'mpg');
ax.set_title('Horsepower vs. MPG')

If we want to save the figure that contains a given axes, we can find the
relevant figure by accessing the figure attribute:

In [104]: fig = ax.figure
fig.savefig('horsepower_mpg.png');

We can further instruct the data frame to plot to a particular axes object.
In this case the corresponding plot() method will return the modified axes
we passed in as an argument. Note that when we request a one-dimensional
grid of plots, the object axes is similarly one-dimensional. We place our
scatter plot in the middle plot of a row of three plots within a figure.

In [105]: fig, axes = subplots(ncols=3, figsize=(15, 5))
Auto.plot.scatter('horsepower', 'mpg', ax=axes[1]);

Note also that the columns of a data frame can be accessed as attributes:
try typing in Auto.horsepower.

https://docs.python.org/3/library/string.html
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We now consider the cylinders variable. Typing in Auto.cylinders.dtype
reveals that it is being treated as a quantitative variable. However, since
there is only a small number of possible values for this variable, we may
wish to treat it as qualitative. Below, we replace the cylinders column with
a categorical version of Auto.cylinders. The function pd.Series() owes its pd.Series()name to the fact that pandas is often used in time series applications.

In [106]: Auto.cylinders = pd.Series(Auto.cylinders, dtype='category')
Auto.cylinders.dtype

Now that cylinders is qualitative, we can display it using the boxplot() .boxplot()method.
In [107]: fig, ax = subplots(figsize=(8, 8))

Auto.boxplot('mpg', by='cylinders', ax=ax);

The hist() method can be used to plot a histogram. .hist()
In [108]: fig, ax = subplots(figsize=(8, 8))

Auto.hist('mpg', ax=ax);

The color of the bars and the number of bins can be changed:
In [109]: fig, ax = subplots(figsize=(8, 8))

Auto.hist('mpg', color='red', bins=12, ax=ax);

See Auto.hist? for more plotting options.
We can use the pd.plotting.scatter_matrix() function to create a scat- pd.plotting.

scatter_
matrix()

terplot matrix to visualize all of the pairwise relationships between the
columns in a data frame.

In [110]: pd.plotting.scatter_matrix(Auto);

We can also produce scatterplots for a subset of the variables.
In [111]: pd.plotting.scatter_matrix(Auto[['mpg',

'displacement',
'weight']]);

The describe() method produces a numerical summary of each column in .describe()a data frame.
In [112]: Auto[['mpg', 'weight']].describe()

We can also produce a summary of just a single column.
In [113]: Auto['cylinders'].describe()

Auto['mpg'].describe()

To exit Jupyter, select File / Close and Halt.
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2.4 Exercises
Conceptual

1. For each of parts (a) through (d), indicate whether we would generally
expect the performance of a flexible statistical learning method to be
better or worse than an inflexible method. Justify your answer.

(a) The sample size n is extremely large, and the number of predic-
tors p is small.

(b) The number of predictors p is extremely large, and the number
of observations n is small.

(c) The relationship between the predictors and response is highly
non-linear.

(d) The variance of the error terms, i.e. σ2 = Var(ε), is extremely
high.

2. Explain whether each scenario is a classification or regression prob-
lem, and indicate whether we are most interested in inference or pre-
diction. Finally, provide n and p.

(a) We collect a set of data on the top 500 firms in the US. For each
firm we record profit, number of employees, industry and the
CEO salary. We are interested in understanding which factors
affect CEO salary.

(b) We are considering launching a new product and wish to know
whether it will be a success or a failure. We collect data on 20
similar products that were previously launched. For each prod-
uct we have recorded whether it was a success or failure, price
charged for the product, marketing budget, competition price,
and ten other variables.

(c) We are interested in predicting the % change in the USD/Euro
exchange rate in relation to the weekly changes in the world
stock markets. Hence we collect weekly data for all of 2012. For
each week we record the % change in the USD/Euro, the %
change in the US market, the % change in the British market,
and the % change in the German market.

3. We now revisit the bias-variance decomposition.

(a) Provide a sketch of typical (squared) bias, variance, training er-
ror, test error, and Bayes (or irreducible) error curves, on a sin-
gle plot, as we go from less flexible statistical learning methods
towards more flexible approaches. The x-axis should represent
the amount of flexibility in the method, and the y-axis should
represent the values for each curve. There should be five curves.
Make sure to label each one.

(b) Explain why each of the five curves has the shape displayed in
part (a).
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4. You will now think of some real-life applications for statistical learn-
ing.

(a) Describe three real-life applications in which classification might
be useful. Describe the response, as well as the predictors. Is the
goal of each application inference or prediction? Explain your
answer.

(b) Describe three real-life applications in which regression might
be useful. Describe the response, as well as the predictors. Is the
goal of each application inference or prediction? Explain your
answer.

(c) Describe three real-life applications in which cluster analysis
might be useful.

5. What are the advantages and disadvantages of a very flexible (versus
a less flexible) approach for regression or classification? Under what
circumstances might a more flexible approach be preferred to a less
flexible approach? When might a less flexible approach be preferred?

6. Describe the differences between a parametric and a non-parametric
statistical learning approach. What are the advantages of a para-
metric approach to regression or classification (as opposed to a non-
parametric approach)? What are its disadvantages?

7. The table below provides a training data set containing six observa-
tions, three predictors, and one qualitative response variable.

Obs. X1 X2 X3 Y
1 0 3 0 Red
2 2 0 0 Red
3 0 1 3 Red
4 0 1 2 Green
5 −1 0 1 Green
6 1 1 1 Red

Suppose we wish to use this data set to make a prediction for Y when
X1 = X2 = X3 = 0 using K-nearest neighbors.

(a) Compute the Euclidean distance between each observation and
the test point, X1 = X2 = X3 = 0.

(b) What is our prediction with K = 1? Why?

(c) What is our prediction with K = 3? Why?

(d) If the Bayes decision boundary in this problem is highly non-
linear, then would we expect the best value for K to be large or
small? Why?
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Applied
8. This exercise relates to the College data set, which can be found in

the file College.csv on the book website. It contains a number of
variables for 777 different universities and colleges in the US. The
variables are

• Private : Public/private indicator
• Apps : Number of applications received
• Accept : Number of applicants accepted
• Enroll : Number of new students enrolled
• Top10perc : New students from top 10 % of high school class
• Top25perc : New students from top 25 % of high school class
• F.Undergrad : Number of full-time undergraduates
• P.Undergrad : Number of part-time undergraduates
• Outstate : Out-of-state tuition
• Room.Board : Room and board costs
• Books : Estimated book costs
• Personal : Estimated personal spending
• PhD : Percent of faculty with Ph.D.s
• Terminal : Percent of faculty with terminal degree
• S.F.Ratio : Student/faculty ratio
• perc.alumni : Percent of alumni who donate
• Expend : Instructional expenditure per student
• Grad.Rate : Graduation rate

Before reading the data into Python, it can be viewed in Excel or a
text editor.

(a) Use the pd.read_csv() function to read the data into Python. Call
the loaded data college. Make sure that you have the directory
set to the correct location for the data.

(b) Look at the data used in the notebook by creating and running
a new cell with just the code college in it. You should notice
that the first column is just the name of each university in a
column named something like Unnamed: 0. We don’t really want
pandas to treat this as data. However, it may be handy to have
these names for later. Try the following commands and similarly
look at the resulting data frames:

college2 = pd.read_csv('College.csv', index_col=0)
college3 = college.rename({'Unnamed: 0': 'College'},

axis=1)
college3 = college3.set_index('College')
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This has used the first column in the file as an index for the
data frame. This means that pandas has given each row a name
corresponding to the appropriate university. Now you should see
that the first data column is Private. Note that the names of
the colleges appear on the left of the table. We also introduced
a new python object above: a dictionary, which is specified by dictionary
(key, value) pairs. Keep your modified version of the data with
the following:
college = college3

(c) Use the describe() method of to produce a numerical summary
of the variables in the data set.

(d) Use the pd.plotting.scatter_matrix() function to produce a
scatterplot matrix of the first columns [Top10perc, Apps, Enroll].
Recall that you can reference a list C of columns of a data frame
A using A[C].

(e) Use the boxplot() method of college to produce side-by-side
boxplots of Outstate versus Private.

(f) Create a new qualitative variable, called Elite, by binning the
Top10perc variable into two groups based on whether or not the
proportion of students coming from the top 10% of their high
school classes exceeds 50%.
college['Elite'] = pd.cut(college['Top10perc'],

[0,0.5,1],
labels=['No', 'Yes'])

Use the value_counts() method of college['Elite'] to see how
many elite universities there are. Finally, use the boxplot() method
again to produce side-by-side boxplots of Outstate versus Elite.

(g) Use the plot.hist() method of college to produce some his-
tograms with differing numbers of bins for a few of the quanti-
tative variables. The command plt.subplots(2, 2) may be use-
ful: it will divide the plot window into four regions so that four
plots can be made simultaneously. By changing the arguments
you can divide the screen up in other combinations.

(h) Continue exploring the data, and provide a brief summary of
what you discover.

9. This exercise involves the Auto data set studied in the lab. Make sure
that the missing values have been removed from the data.

(a) Which of the predictors are quantitative, and which are quali-
tative?

(b) What is the range of each quantitative predictor? You can an-
swer this using the min() and max() methods in numpy. .min()

.max()(c) What is the mean and standard deviation of each quantitative
predictor?
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(d) Now remove the 10th through 85th observations. What is the
range, mean, and standard deviation of each predictor in the
subset of the data that remains?

(e) Using the full data set, investigate the predictors graphically,
using scatterplots or other tools of your choice. Create some plots
highlighting the relationships among the predictors. Comment
on your findings.

(f) Suppose that we wish to predict gas mileage (mpg) on the basis
of the other variables. Do your plots suggest that any of the
other variables might be useful in predicting mpg? Justify your
answer.

10. This exercise involves the Boston housing data set.

(a) To begin, load in the Boston data set, which is part of the ISLP
library.

(b) How many rows are in this data set? How many columns? What
do the rows and columns represent?

(c) Make some pairwise scatterplots of the predictors (columns) in
this data set. Describe your findings.

(d) Are any of the predictors associated with per capita crime rate?
If so, explain the relationship.

(e) Do any of the suburbs of Boston appear to have particularly
high crime rates? Tax rates? Pupil-teacher ratios? Comment on
the range of each predictor.

(f) How many of the suburbs in this data set bound the Charles
river?

(g) What is the median pupil-teacher ratio among the towns in this
data set?

(h) Which suburb of Boston has lowest median value of owner-
occupied homes? What are the values of the other predictors
for that suburb, and how do those values compare to the overall
ranges for those predictors? Comment on your findings.

(i) In this data set, how many of the suburbs average more than
seven rooms per dwelling? More than eight rooms per dwelling?
Comment on the suburbs that average more than eight rooms
per dwelling.


