
Extending AR Models for Complex Time Series Data

After finish learning the materials from Module 1, you may wonder why we start with AR models.
As we mentioned at the beginning, AR models are central to stationary time series data analy-
sis and, as components of larger models or in suitably modified and generalized forms, underlie
nonstationary time-varying models. This reading material will give examples about extending AR
models for complex time series data. Hopefully this notes will help you build up confidence to this
relatively simple model.

1 Autoregressive Moving Average Models (ARMA)

1.1 Characteristic polynomial of AR processes

An AR(p) process yt is said to be causal if it can be written as a one-sided linear process dependent
on the past

yt = Ψ(B)εt =
∞∑
j=0

ψjεt−j (1)

where B is the backshift operator, with Bεt = εt−1, ψ0 = 1 and
∑∞

j=0 |ψj | <∞.

yt is causal only when the autoregressive characteristic polynomial, defined as

Φ(u) = 1−
p∑
j=1

φju
j (2)

has roots with moduli greater than unity. That is, yt is causal if Φ(u) = 0 only when |u| > 1. This
causality condition implies stationarity, and so it is often referred as the stationary condition in the
time series literature.

The autoregressive characteristic polynomial can also be written as Φ(u) =
∏p
j=1(1−αju), so that

its roots are the reciprocals of the αjs. The αjs may be real-valued or may appear as pairs of
complex conjugates. Either way, if |αj | < 1 for all j, the process is stationary.

1.2 Structure of ARMA models

Consider a time series yt, for t = 1, 2, · · · , arising from the model

yt =

p∑
i=1

φiyt−i +

q∑
j=1

θjεt−j + εt (3)

with εt ∼ N(0, ν). Then, {yt} follows an autoregressive moving average model, or ARMA(p, q),
where p and q are the orders of the autoregressive and moving average parts, respectively. When
p = 0, {yt} is said to be a moving average process of order q or MA(q). Similarly, when q = 0, {yt}
is an autoregressive process of order p or AR(p).



Example. MA(1) process. If {yt} follows a MA(1) process, yt = θεt−1 + εt, the process is
stationary for all the values of θ. In addition, it is easy to see that the autocorrelation function has
the following form

ρ(h) =


1 h = 0

θ

1 + θ2
h = 1

0 o.w.

(4)

Now, if we consider a MA(1) process with coefficient 1
θ instead of θ, we would obtain the same cor-

relation function, and so it would be impossible to determine which of the two processes generated
the data. Therefore, it is necessary to impose identifiability conditions on θ. In particular, 1

θ > 1
is the identifiability condition for a MA(1), which is also known as the invertibility condition,
given that it implies that the MA process can be ”inverted” into an infinite order AR process.

In general, a MA(q) process is identifiable or invertible only when the roots of the MA char-
acteristic polynomial Θ(u) = 1 + θ1u + · · · + θqu

q lie outside the unit circle. In this case it is
possible to write the MA process as an infinite order AR process.

For an ARMA(p, q) process, the stationary condition is given in terms of the AR coefficients, i.e.,
the process is causal only when the roots of the AR characteristic polynomial Φ(u) = 1 − φ1u −
· · · − φpup lie outside the unit circle. The ARMA process is invertible only when the roots of the
MA characteristic polynomial lie outside the unit circle. So, if the ARMA process is causal
and invertible, it can be written either as a purely AR process of infinite order, or as
a purely MA process of infinite order.

If {yt} follows an ARMA(p, q) we can write Φ(B)yt = Θ(B)εt, with

Φ(B) = 1− φ1B − · · · − φpBp

Θ(B) = 1 + θ1B + · · ·+ θqB
q (5)

where B is the backshift operator. If the process is causal then we can write it as a purely MA
process of infinite order

yt = Φ−1(B)Θ(B)εt = Ψ(B)εt =

∞∑
j=0

ψjεt−j (6)

with Ψ(B) such that Φ(B)Ψ(B) = Θ(B). The ψj values can be found by solving the homogeneous
difference equations given by

ψj −
p∑

h=1

φhψj−h = 0, j ≥ max(p, q + 1) (7)

with initial conditions

ψj −
j∑

h=1

φhψj−h = θj , 0 ≤ j < max(p, q + 1) (8)

and θ0. The general solution to the Equations (7) and (8) is given by

ψj = αj1p1(j) + · · ·+ αjrpr(j) (9)

where α1, · · · , αr are the reciprocal roots of the characteristic polynomial Φ(u) = 0, with multiplic-
ities m1, · · · ,mr, respectively, and each pi(j) is a polynomial of degree mi − 1.
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1.3 Inversion of AR components

In contexts where the time series has a reasonable length, we can fit long order AR models rather
than ARMA or other, more complex forms. One key reason is that the statistical analysis, at least
the conditional analysis based on fixed initial values, is much easier.

If this view is adopted in a given problem, it may be informative to use the results of an AR analysis
to explore possible MA component structure using the device of inversion, or partial inversion, of
the AR model. Assume that {yt} follows an AR(p) model with parameter vector φ = (φ1, · · · , φp)T ,
so we can write

Φ(B)yt =

p∏
i=1

(1− αiB)yt = εt (10)

where the αis are the autoregressive characteristic reciprocal roots.

For some positive integer r < p, suppose that the final p−r reciprocal roots are identified as having
moduli less than unity; some or all of the first r roots may also represent stationary components,
through that is not necessary for the following development. Then, we can rewrite the model as

r∏
i=1

(1− αiB)yt =

p∏
i=r+1

(1− αiB)−1εt = Ψ∗(B)εt (11)

where the implicity infinite order MA component has the coefficients of the infinite order polynomial
Ψ∗(u) = 1 +

∑∞
j=1 ψ

∗
ju

j , defined by

1 = Ψ∗(u)

p∏
i=r+1

(1− αiu) (12)

So we have the representation

yt =
r∑
j=1

φ∗jyt−j + εt +
∞∑
j=1

ψ∗j εt−j (13)

where the r new AR coefifients φ∗j , for j = 1, · · · , r, are defined by the characteristic equation
Φ∗(u) = (1 − αiu) = 0. The MA terms ψ∗j can be easily calculated recursively, up to some
appropriate upper bound on their number, say q. Explicitly, they are recursively computed as
follows.

1. Initialize the algorithm by setting ψ∗i = 0 for all i = 1 : q.

2. For i = (r + 1) : p, update ψ∗1 = ψ∗1 + αi, and then

• for j = 2 : q, update ψ∗j = ψ∗j + αiψ
∗
j−1.

Suppose φ is set at some estimate, such as a posterior mean, in the AR(p) model analysis. The
above calculations can be performed for any specified value of r to compute the corresponding
MA coefficients in an inversion to the approximating ARMA(r, q) model. If the posterior for φ is
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sampled in the AR analysis, the above computations can be performed repeated for all sampled
φ vectors, so producing corresponding samples of the ARMA parameters φ∗ and ψ∗. Thus,
inference in various relevant ARMA models can be directly, and quite easily, deduced
by inversion of longer order AR models.

Typically, various values of r will be explored. Guidance is derived from the estimated amplitudes
and, in the case of complex roots, periods of the roots of the AR model. Analyses in which some
components are persistent suggest that these components should be retained in the AR description.
The remaining roots, typically corresponding to high frequency characteristics in the data with
lower moduli, are then the candidates for inversion to what will often be a relatively low order MA
component. The calculations can be repeated, sequentially increasing q and exploring inferences
about the MA parameters, to assess a relevant approximating order.

2 Smoothing and Differencing

Many time series models are built under the stationary assumption. However, in many practical
scenarios the data are realizations from one or several nonstationary processes. In this case, methods
that aim to eliminate the nonstationary components are often used. The idea is to separate the
nonstationary components, such as trends or seasonality, from the stationary ones so that the
latter can be carefully studied via traditional time series models such as the aforementioned ARMA
models. We briefly discuss two methods that are commonly used in practice for detrending and
smoothing.

2.1 Differencing

Differencing is used to remove trends in time series data. The first difference of a time series is
defined in terms of the difference operator that we denoted as D, that produces the transformation
Dyt = yt − yt−1. Higher order differences are obtained by successively applying the operator D.
For example

D2yt = D(Dyt) = D(yt − yt−1) = yt − 2yt−1 + yt−2 (14)

Differencing can also be written in terms of the so called backshift operator B, with Byt = yt−1 so
that Dyt = (1−B)yt and Ddyt = (1−B)dyt.

2.2 Moving Averages

Moving averages is a method commonly used to “smooth” a time series by removing certain features
(e.g., seasonality) to highlight other features (e.g., trends). A moving average is a weighted average
of the time series around a particular time t. In general, if we have data y1:T , we could obtain a
new time series such that

zt =

p∑
j=−q

ajyt+j (15)
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for t = (q+ 1) : (T − p), with aj ≥ 0 and
∑p

j=−q aj = 1. Usually p = q and aj = a−j . For example,
to remove seasonality in monthly data, one can use a moving average with p = 6, a6 = a−6 = 1/24,
and aj = a−j = 1/12 for k = 0, · · · , 5, resulting in

zt =
1

24
yt−6 +

1

12
yt−5 + · · ·+ 1

12
yt+5 +

1

24
yt+6 (16)

3 Epilogue

With the methodology we have discussed in this reading material, you should now be confident
that the AR models can deal with a large class of time series data. In practice, one can first
check the stationarity of the time series. If it contains nonstationary features, try using some
detrending, deseasonalizing and smoothing method. Then for the resulting stationary series, using
ARMA models and perform the inference by fitting a longer order AR model and inverting AR
components.
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