
A N I N T R O D U C T I O N T O F I N I T E M I X T U R E M O D E L S

abel rodríguez

January, 2018

preface

This monograph provides an introduction to finite mixture models, which
are an extremely popular tools in statistics and machine learning. It is in-
tended to be a companion of the homonymous course offered by the author
and UCSC on the Coursera platform (https://www.coursera.org/).

Mixture models provide a flexible approach to modeling data and are
useful in density estimation, clustering and classification problems:

1. Standard families of probability distributions such as the Gaussian,
exponential or Poisson are often too restrictive for modeling features
of real data such as multimodality or zero inflation. Mixture models,
which can be related to kernel density estimation procedures, address
this issue in a way that allows for natural generalizations of well-
known procedures.

2. In addition to providing flexible probability distributions, finite mix-
ture models have a strong relationship with classical clustering and
classification procedures such as K-mean clustering, as well as lin-
ear and quadratic discriminant analysis. More generally they provide
a tool to understand and generalize these approaches, as well as to
quantify the uncertainty associated with the estimates and predictions
generated by them.

In addition to the basics of calculus-based probability, this course as-
sumes that you are familiar with the principles of maximum likelihood
and Bayesian estimation, including familiarity with common computational
tools such as the Expectation-Maximization and Markov chain Monte Carlo
algorithms (particularly with Gibbs sampling and Random Walk Metropolis-
Hastings methods). It also assumes basic knowledge of the R language. If
needed, there are a number of excellent online courses (in Coursera, as well
as in other platforms) that you can use to strengthen your background.

Notations

We reserve the capital letters F, G, H and P to denote generic probability dis-
tribution functions, while their lowercase counterparts f, g, h and p repre-
sent the associated densities/probability mass functions. Similarly, the capi-
tal letters such as X, Y and Z will be used to denote random variables, while
their lowercase counterparts x, y and z to represent realizations of the ran-
dom variable. Both vectors and scalars are denoted with either Greek or
Latin letters not reserved for probability densities or realizations of random
variables, but we do not distinguish between. On the other hand, matrices
are denoted with uppercase letters not reserved for probability distributions
or random variables.

C O N T E N T S

1 basic concepts 1

1.1 Definition of a finite mixture model 1

1.2 Why finite mixture models? . 3

1.3 Hierarchical representation of finite mixtures 7

1.4 The likelihood function for mixture models 10

1.5 Parameter identifiability . 12

2 maximum likelihood estimation for mixture models 15

2.1 Expectation maximization algorithms for mixture models . . 15

2.2 The EM algorithm for a location mixture of two Gaussian dis-
tributions . 16

2.3 General location and scale mixtures of p-variate Gaussian dis-
tributions . 20

3 bayesian inference for finite mixture models 23

3.1 Markov chain Monte Carlo algorithms for mixture models . . 23

3.2 The MCMC algorithm for a location mixture of two Gaussian
distributions . 24

3.3 General location and scale mixtures of p-variate Gaussian dis-
tributions . 28

4 applications of mixture models 31

4.1 Density estimation . 31

4.2 Clustering (unsupervised classification) 32

4.3 (Supervised) Classification . 38

5 practical considerations 43

5.1 Ensuring numerical stability when computing class probabil-
ities . 43

5.2 Numerical consequences of multimodality 45

5.3 Selecting the number components: BIC 51

5.4 Fully Bayesian inference on the number of components 57

5.5 Fully Bayesian inference on the partition structure 59

v

1B A S I C C O N C E P T S

1.1 definition of a finite mixture model

Let ω1, . . . ,ωK be a collection of real numbers such that 0 6 ωk 6 1

and
∑K
k=1ωk = 1, and G1, . . . ,GK be a collection of cumulative distribu-

tion functions. A random variable X with cumulative distribution function
F(x) = Pr(X 6 x) of the form

F(x) =

K∑
k

ωk︸︷︷︸
Weight

Gk(x)︸ ︷︷ ︸
Component

is said to follow finite mixture distribution with K components. The associ-
ated density/probability mass function takes the form

f(x) =

K∑
k

ωkgk(x),

where gk(x) is the density associated with Gk(x).
The values ω1, . . . ,ωK are usually called the “weights” of the mixture,

and the distributions G1, . . . ,GK are called the “components” of the mixture.
Each component will typically belong to a parametric family that is indexed
by its own parameter θk. We will write Gk(x) = Gk(x | θk) whenever it is
necessary to highlight the dependence on these parameters.

It is often the case that G1, . . . GK all belong to the same family and differ
only in the value parameters associated with each of the distributions, so
that Gk(x | θk) = G(x | θk). In that case, the function G (and sometimes
its density/probability mass function g) are called the “kernel” of the mix-
ture. For example, we could define a mixture with K = 3 components, with
G(x | θ1), G(x | θ2) and G(x | θ3) all corresponding to exponential distri-
butions with means θ1, θ2 and θ3 respectively. In that case, the cumulative
distribution function of the mixture is given by

F(x) = ω1

(
1− exp

{
x

θ1

})
+ω2

(
1− exp

{
x

θ2

})
+ω3

(
1− exp

{
x

θ3

})
,

for x > 0 and 0 otherwise, while the associated density function is

f(x) =
ω1
θ1

exp
{
x

θ1

}
+
ω2
θ2

exp
{
x

θ2

}
+
ω3
θ3

exp
{
x

θ3

}
, (1)

again for x > 0 and 0 otherwise. Similarly,

f(x) =

ω
xν1−1

Γ(ν1)λ
ν1
1

exp
{
x
λ1

}
+ (1−ω) xν2−1

Γ(ν2)λ
ν2
2

exp
{
x
λ2

}
x > 0

0 otherwise

is the density of a mixture of two Gammas with mixture weights ω and
1−ω, and component-specific parameters θ1 = (ν1, λ1) and θ2 = (ν2, λ2)
(in the previous expression, Γ(a) =

∫∞
0 z

a−1 exp{−z}dz denotes the well-
known Gamma function). Plots of the cumulative distribution and density

1

2 basic concepts

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

x

F
(x

)

Figure 1: Probability distribution function for a mixture of two Gamma distribution
with parameters ω = 1/2, ν1 = 3, ν2 = 1, λ1 = 1 and λ2 = 2.

functions for this mixture in the case ω = 1/2, ν1 = 3, ν2 = 1, λ1 = 1

and λ2 = 2 can be seen Figures 1 and 2, respectively. Note that the density
function in particular has a very particular shape around the origin that is
not commonly observed when working with standard distributions

The mean and variance of a random variable that follows a mixture distri-
bution can be computed in terms of the weights and the mean and variances
of each component:

EF(X) =

K∑
k=1

ωkEGk(X)

VarF(X) = EF(X
2) − {EF(X)}

2

=

K∑
k=1

ωk

{
EGk(X

2)
}
−

{
K∑
k=1

ωkEGk(X)

}2

=

K∑
k=1

ωk

{
VarGk(X) +

[
EGk(X)

]2}
−

{
K∑
k=1

ωkEGk(X)

}2
,

where EF(X) and VarF(X) denotes, respectively, the expected value and the
variance of X if X is distributed according to F. Note that, while the mean of
the mixture is a linear combination of the means of the components, that is

1.2 why finite mixture models? 3

0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

x

f(
x)

Figure 2: Probability distribution function for a mixture of two Gamma distribution
with parameters ω = 1/2, ν1 = 3, ν2 = 1, λ1 = 1 and λ2 = 2.

not typically the case for the variance. Once of the few exceptions is when
the mean of each component is zero, in which case

VarF(X) =

K∑
k=1

ωk

{
VarGk(X) +

[
���

�:0EGk(X)

]2}
−

{
K∑
k=1

ωk���
�:0EGk(X)

}2
(2)

=

K∑
k=1

ωkVarGk(X). (3)

As an example, consider again the three-component mixture of exponen-
tial distributions with density 1. The mean is simply

EF(X) = ω1θ1 +ω2θ2 +ω3θ3

while the variance is

VarF(X) = ω12θ
2
1 +ω22θ

2
2 +ω32θ

2
3 − {ω1θ1 +ω2θ2 +ω3θ3}

2

1.2 why finite mixture models?

Finite mixtures of distributions within a single family provide a lot of flexi-
bility. For example, a mixture of Gaussian distributions can have a bimodal
density. An example is given by

f(x) = 0.6
1√
2π

exp
{
−
1

2
x2
}
+ 0.4

1√
2π

1

2
exp
{
−
1

2

(x− 5)2

4

}
.

4 basic concepts

−5 0 5 10

0.00

0.05

0.10

0.15

0.20

0.25

x

D
en

si
ty

Figure 3: An example of a bimodal density generated by a mixture of two Gaussian
distributions

The fact that this distribution is bimodal can be easily verified by plotting
the density function in R (see Figure 3):

Mixture of univariate Gaussians leading to bimodality

x = seq(-5, 12, length=100)

y = 0.6*dnorm(x, 0, 1) + 0.4*dnorm(x, 5, 2)

par(mar=c(4,4,1,1)+0.1)

plot(x, y, type="l", ylab="Density", las=1, lwd=2)

Alternatively, the mixture can look like a unimodal but skewed distribu-
tion. For example, the mixture

f(x) = 0.55
1√
2π
√
2

exp
{
−
1

2

x2

2

}
+ 0.45

1√
2π

1

4
exp

{
−
1

2

(
x− 3

4

)2}
,

has a heavier right tail, which you can again verify by plotting it (see Figure
4).

Mixture of univariate Gaussians, unimodal skewed

x = seq(-5, 12, length=100)

y = 0.55*dnorm(x, 0, sqrt(2)) + 0.45*dnorm(x, 3, 4)

par(mar=c(4,4,1,1)+0.1)

plot(x, y, type="l", ylab="Density", las=1, lwd=2)

1.2 why finite mixture models? 5

−5 0 5 10

0.00

0.05

0.10

0.15

x

D
en

si
ty

Figure 4: An example of a unimodal but skewed density generated by a mixture of
two Gaussian distributions

Finally, a mixture can have symmetric but heavy-tailed distribution. For
example, the following code can be used to compare the density of the three-
component mixture

f(x) = 0.4
1√
2π
√
2

exp
{
−
1

2

x2

2

}
+ 0.4

1√
2π

1

4
exp
{
−
1

2

x2

16

}
+ 0.2

1√
2π

1

20
exp
{
−
1

2

x2

20

}
.

with that of a single normal distribution with the same variance 0.4× 2+
0.4× 16+ 0.2× 20 = 11.2 (note that in this case the expected value of each
component, and therefore the mixture, is equal to zero, and equation (2)
applies). See Figure 5.

Mixture of univariate Gaussians, unimodal heavy tail

x = seq(-12, 12, length=100)

y = 0.40*dnorm(x, 0, sqrt(2)) +

0.40*dnorm(x, 0, sqrt(16)) +

0.20*dnorm(x, 0, sqrt(20))

z = dnorm(x, 0, sqrt(0.4*2+0.4*16+0.2*20))

par(mar=c(4,4,1,1)+0.1)

plot(x, y, type="l", ylab="Density", las=1, lwd=2)

lines(x, z, lty=2, lwd=2)

legend(2, 0.16, c("Mixture","Gaussian"), lty=c(1,2), bty="n",

cex=0.77, lwd=c(2,2))

This flexibility means that mixtures that involve a single kernel (and, in
particular, mixtures of Gaussian distributions) can be a very useful tool for
density estimation. Nonetheless, not all useful mixture models involve com-
ponents that belong to the same family of distributions. In some circum-

6 basic concepts

−10 −5 0 5 10

0.00

0.05

0.10

0.15

x

D
en

si
ty

Mixture
Gaussian

Figure 5: An example of a unimodal, heavy tailed density generated by a mixture
of three Gaussian distributions. To make the presence of heavy tails clear,
the figure also depicts the density of a Gaussian distribution with the same
mean and variance as the mixture.

stances it is useful to allow for different components to belong to different
families, and even to blend discrete a continuous distributions. For example
for zero-inflated data (i.e., data that contains a large number zeros) mixing a
member of a standard family of distributions with a degenerate distribution
at zero can be particularly helpful. For example, a zero-inflated negative
binomial distribution with probability mass function:

p(x) =

ω1 + (1−ω1)θ
r x = 0

(1−ω1)
(
x+r−1
x

)
θr(1− θ)x x > 1

is an example of a mixture distribution in which component 1 corresponds
to a point mass at zero and component 2 to a negative binomial distribu-
tion with parameters r and θ (note that we have explicitly used the fact that
ω2 = 1−ω1). In this case the value of ω1 controls the number of additional
zeros that you observed over those expected under a negative binomial dis-
tribution with parameters r and θ. This can most easily be seen by plotting
the probability mass function of the regular negative binomial distribution

p∗(x) =

(
x+ r− 1

x

)
θr(1− θ)x

against that of the zero inflated version (see Figures 6).

x = seq(0, 15)

y = dnbinom(x, 8, 0.6)

z = 0.2*c(1,rep(0,length(x)-1)) + (1-0.2)*y

par(mfrow=c(2,1))

par(mar=c(4,4,1,1)+0.1)

1.3 hierarchical representation of finite mixtures 7

barplot(y, names.arg=x, las=1, xlab = "x", ylab="Probability",

border=NA)

par(mar=c(4,4,1,1)+0.1)

barplot(z, names.arg=x, las=1, xlab = "x", ylab="Probability",

border=NA)

Similarly, we can write a zero-inflated log-Gaussian distribution as a mix-
ture of log-Gaussian distribution and a degenerate distribution at zero. The
corresponding density takes the form

f(x) =

ω1δ0(x) + (1−ω1)
1√
2πσx

exp
{
− lnx−µ

2σ2

}
x > 0

0 otherwise,

where δa(x) denotes the Dirac delta function. The cumulative distribution
function is easy to graph (see Figure 7) but note that graphing the density f
is more difficult because it involves plotting the Dirac delta function.

x = seq(-2, 15, length=1000)

y = plnorm(x, 1.5, 0.5)

z = 0.3*as.numeric(x>=0) + (1-0.3)*y

par(mar=c(4,4,1,1)+0.1)

plot(x, y, type="l", las=1, lty=2, xlab="x",

ylab="Cumulative distribution Function", lwd=2)

lines(x, z, lty=1, lwd=2)

legend(4, 0.45, c("Zero infla. log Gaussian","log Gaussian"),

lty=c(1,2), bty="n", lwd=c(2,2))

1.3 hierarchical representation of finite mixtures

Recall that the cumulative distribution function of a mixture takes the form

F(x) =

K∑
k

ωkGk(x),

where G1(x), . . . ,GK(x) are themselves well-defined cumulative distribution
functions. Hence, the statement “X is distributed according to F”, X ∼ F, can
be rewritten by introducing a (discrete) random variables c ∈ {1, . . . ,K} such
that

X | c ∼ Gc, P(c = k) = ωk.

Indeed, note that the marginal distribution for X obtained by integrating the
implied joint distribution of X and c over c is

∫
P(x | c)P(dc) =

∑K
k=1Gkωk =

F(x) as expected.
This hierarchical representation is key both for computation and interpre-

tation. Consider for example the problem of generating a sample x1, . . . , xn
of independent and identically realizations from a mixture model with cu-
mulative distribution function F. If you know how to simulate from each of
the components G1, . . . ,GK, then you can easily simulate from the mixture
by first randomly sampling the component that generated each observation,
and then sampling the actual observation from the chosen component. In
particular, to generate an independent sample x1, . . . , xn from a mixture
distribution F you can repeat the following two steps for each i = 1, 2, . . . ,n:

8 basic concepts

0 2 4 6 8 10 13

x

P
ro

ba
bi

lit
y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 2 4 6 8 10 13

x

P
ro

ba
bi

lit
y

0.00

0.05

0.10

0.15

0.20

Figure 6: Comparison of the probability mass function of a negative binomial distri-
bution (top panel) against a zero inflated mixture of that same distribution
and a point mass at zero (bottom panel). Mixtures of this type are often
useful to model zero inflated data.

1.3 hierarchical representation of finite mixtures 9

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

x

C
um

ul
at

iv
e

di
st

rib
ut

io
n

F
un

ct
io

n

Zero infla. log Gaussian
log Gaussian

Figure 7: Comparison of the probability distribution function of a log-Gaussian dis-
tribution against a zero inflated mixture of that same distribution and a
point mass at zero. Mixtures of this type are often useful to model zero
inflated data.

10 basic concepts

1. Select ci independently from a discrete distribution on {1, . . . ,K} with
associated probabilities ω1, . . . ,ωK.

2. Simulate xi from Gci .

For example, we can use the following R code to simulate 50 observations
from a mixture of two Gaussian distributions

f(x) = 0.6
1√
2π

exp
{
−
1

2
x2
}
+ 0.4

1√
2π2

exp

{
−
1

2

(
x− 5

2

)2}
.

(See also Figure 8).

Generate n observations from a mixture of two Gaussian

distributions

n = 50

w = c(0.6, 0.4) # Weights

mu = c(0, 5) # Means

sigma = c(1, 2) # Standard deviations

cc = sample(1:2, n, replace=T, prob=w)

x = rnorm(n, mu[cc], sigma[cc])

Plot f(x) along with the observations

just sampled

xx = seq(-5, 12, length=200)

yy = w[1]*dnorm(xx, mu[1], sigma[1]) +

w[2]*dnorm(xx, mu[2], sigma[2])

par(mar=c(4,4,1,1)+0.1)

plot(xx, yy, type="l", ylab="Density", xlab="x", las=1, lwd=2)

points(x, y=rep(0,n), pch=1)

The simulation exercise should make it clear that the auxiliary variable
ci indicates which component of the mixture generates the i-th observa-
tion, and that the weight ωk represents the average number of observations
from component k that we expect to see in a random sample. The variables
c1, . . . , cn will be particularly important when we use mixture models for
clustering and classification (unsupervised and supervised classification).

1.4 the likelihood function for mixture models

We have discussed some of the properties of mixture models as a data-
generation mechanism, i.e., as a tool that can be used to generate data once
the parameters of the mixture θ = (θ1, . . . , θK) and ω = (ω1, . . . ,ωK)
have been specified. However, in most practical applications we are more
interested on first solving the inverse problem: learning the values of these
parameters from an independent and identically distributed random sam-
ple x = (x1, . . . , xn). The likelihood function, which as you might recall is
defined as a function of the parameters that is proportional to the joint prob-
ability density/mass function of the data given the parameters, will be the
key tool we use to solve this inverse problem.

The likelihood function associated with an independent and identically
distributed sample from a mixture model takes the form

LO(θ,ω; x) ∝ p(x | θ,ω) =

n∏
i=1

K∑
k=1

ωkgk(xi | θk),

1.4 the likelihood function for mixture models 11

−5 0 5 10

0.00

0.05

0.10

0.15

0.20

0.25

x

D
en

si
ty

Figure 8: Density of a mixture of two Gaussian distributions along with 50 randomly
generated samples from it.

12 basic concepts

where gk is either the density of the probability mass function associated
with Gk. We call this the observed-data likelihood because if is based only
of the vector of observations x and does not involve the indicators c =

(c1, . . . , cn).
We can also define a complete-data likelihood that involves the observations

x as well as the indicators c using the hierarchical representation discussed
in Section 1.3.

L(θ,ω; x, c)p(x, c | θ,ω) =

n∏
i=1

K∏
k=1

[ωkgk(xi | θk)]
1(ci=k) ,

where 1(·) represents the indicator function, so that

1(ci = k) =

1 ci = k,

0 otherwise .

By introducing the indicators c1, . . . , cn we have transformed the sum that
appears in the definition of the density of a mixture into a product over the
components. Note, however, that for a given value of ci, only one of the
K terms involved in the innermost product is different from zero (the one
corresponding to k = ci). This version of the full-data likelihood will play
a key role in the development of Expectation-Maximization algorithms for
maximum likelihood estimation.

An alternative way to write the full data likelihood is as the product of
two distributions

p(x, c | θ,ω) = p(x, | c,θ)p(c |ω),

where

p(x, | c,θ) =
n∏
i=1

gci(xi | θci)

p(c |ω) =

K∏
k=1

ω
∑n
i=1 1(ci=k)

k .

This representation will be key when we develop Markov chain Monte Carlo
algorithm for Bayesian inference in finite mixture models.

1.5 parameter identifiability

You might recall that a probability model is identifiable if and only if differ-
ent values of the parameters generate different probability distributions of
the observable variables.

One challenge involved in working with mixture models is that they are
not fully identifiable. To see why, consider a mixture of two univariate Gaus-
sian distributions where ω1 = 0.3, ω2 = 0.7, µ1 = 0, µ2 = 1, σ1 = 1 and
σ2 = 2. The associated density

f(x) = 0.3
1√
2π

exp
{
−
1

2
x2
}
+ 0.7

1√
2π2

exp

{
−
1

2

(
x− 1

2

)2}
is identical to the density of another mixture with parameters ω1 = 0.7,
ω2 = 0.3, µ1 = 1, µ2 = 0, σ1 = 2 and σ2 = 1.

f(x) = 0.7
1√
2π2

exp

{
−
1

2

(
x− 1

2

)2}
+ 0.3

1√
2π

exp
{
−
1

2
x2
}

.

1.5 parameter identifiability 13

In other words, the labels used to distinguish the components in the mix-
ture are not identifiable. The literature sometimes refers to this type of lack
of identifiability as the label switching “problem”. Whether label switching
is an actual problem or not depends on the computational algorithm being
used to fit the model, and the task we are attempting to complete in any
particular case. For example, label switching tends to not be an issue for the
purpose of density estimation or classification problems, but it can lead to
serious difficulties in clustering problems. We delay a more thorough dis-
cussion of identification issues until Chapters 4 and 5.

Identifiability problems in mixture models are not restricted to label switch-
ing and can arise also when attempting to determine the number of compo-
nents in the mixture. For example, note that we can write any probability
distribution as a mixture of K identical components, e.g.,

f(x) =
1√
2πσ

exp

{
−
1

2

(
x− µ

σ

)2}

=

K∑
k=1

ωk
1√
2πσ

exp

{
−
1

2

(
x− µ

σ

)2}

for any set of weights ω1, . . . ,ωK. Similarly, any density can be written as a
mixture with K components in which K− 1 have zero weights.

In practical terms, this means that a K-component mixture that involves
rare (i.e., low weight) components or where some components have param-
eters that are very close to each other will be hard to differentiate from
mixtures with a K ′ < K components. This makes the problem of selecting
the number of components in the mixture a difficult one. Again, we delay
further discussion of these issues until Chapter 5.

2M A X I M U M L I K E L I H O O D E S T I M AT I O N F O R M I X T U R E
M O D E L S

Maximum likelihood estimation is the most common approach to estimate
the parameters of statistical models. However, attempting to obtain max-
imum likelihood estimates (MLEs) ω̂ and θ̂ by directly maximizing the
observed-data likelihood

(ω̂, θ̂) = arg max
ω,θ

n∏
i=1

K∑
k=1

ωkgk(xi | θk),

is often computationally unfeasible. Indeed, there is rarely a closed-form
solution for this maximization problem, and standard numerical algorithms
such as the Newton-Raphson algorithm often present convergence issues,
particularly for mixtures with a large number of components.

2.1 expectation maximization algorithms for mixture mod-
els

A common computational approach used for maximum likelihood estima-
tion of mixture models is the expectation-maximization (EM) algorithm. The
EM algorithm is an iterative algorithm for computing maximum likelihood
estimators in the presence of missing data/latent variables. In the case of
mixture models, the latent indicators c1, . . . , cn act as our missing variables.
It is worthwhile noting that the version of the EM algorithm for mixture
models was developed in the 1970s well before the general EM algorithm
was published.

The EM algorithm is iterative, and therefore requires that we select initial
values ω(0) and θ(0) for the parameters of the model. Given these initial
values, the algorithm proceeds by repeatedly updating these values using
two steps:

E step: Set Q
(
ω, θ | ω(t), θ(t), x

)
= Ec|ω(t),θ(t),x {logp(x, c | ω, θ)} ,

M step: Set
(
ω̂(t+1), θ̂(t+1)

)
= arg max

ω,θ
Q
(
ω, θ | ω̂(t), θ̂(t),y

)
.

These two steps are repeated until a stopping criteria is satisfied (usually,
the relative change in the expected value of the full-data log-likelihood Q is
below a given threshold ε, e.g. ε = 10−5).

Let’s investigate in more detail the algorithm. Note that conditionally on
ω, θ and x the different cis are independent from each other and

p(ci = k | ω, θ, x) =
ωkgk(xi | θk)∑K
l=1ωlgl(xi | θl)

= vi,k(ω, θ).

The value of vi,k(ω, θ) can be interpreted as the probability that observation
i was generated from component k if we assume that the true parameters of
the mixture model are ω and θ. Also, remember that

p(x, c | θ,ω) =

n∏
i=1

K∏
k=1

[ωkgk(xi | θk)]
1(ci=k) ,

15

16 maximum likelihood estimation for mixture models

which implies that

logp(x, c | θ,ω) =

n∑
i=1

K∑
k=1

1(ci = k) [logωk + loggk(xi | θk)] .

Hence,

Q
(
ω, θ | ω̂(t), θ̂(t), x

)
=

n∑
i=1

K∑
k=1

Ec|ω̂(t),θ̂(t),x

1(ci = k) [logωk + loggk(xi | θk)]︸ ︷︷ ︸
constant with respect to c


and therefore:

Q
(
ω, θ | ω̂(t), θ̂(t), x

)
=

n∑
i=1

K∑
k=1

v
(t+1)
i,k

(
ω̂(t), θ̂(t)

)
[logωk + loggk(xi | θk)] .

(Remember that the term that is constant with respect to c can come out of
the expectation, and that the expected value of an indicator function is just
the probability of the event inside the indicator). Hence, roughly speaking,
we can see that the Q function is in this case equivalent to a weighted av-
erage of the log likelihoods associated with each of the components in the
mixture.

2.2 the em algorithm for a location mixture of two gaus-
sian distributions

A specific example is useful to fully understanding the algorithm. In partic-
ular, consider estimating the parameters of a location mixture of two uni-
variate normal distributions with means µ1 and µ2, and common variance
σ2. The density of this mixture takes the form:

f(x | ω,µ1,µ2,σ) = ω
1√
2πσ

exp
{
−
(x− µ1)

2

2σ2

}
+ (1−ω)

1√
2πσ

exp
{
−
(x− µ2)

2

2σ2

}
The expected weights are

v
(t+1)
i,1 = v

(t+1)
i,1

(
ω̂(t), µ̂(t)1 , µ̂(t)2 , σ̂(t)

)
=

ω̂(t) exp

{
−12

(
x−µ̂

(t)
1

σ̂(t)

)2}

ω̂(t) exp

{
−12

(
x−µ̂

(t)
1

σ̂(t)

)2}
+
(
1− ω̂(t)

)
exp

{
−12

(
x−µ̂

(t)
2

σ̂(t)

)2}

2.2 the em algorithm for a location mixture of two gaussian distributions 17

and v(t+1)i,2 = 1− v
(t+1)
i,1 . Therefore, the Q function is:

Q
(
ω,µ1,µ2,σ | ŵ(t), µ̂(t)1 , µ̂(t)2 , σ̂(t), x

)
=

n∑
i=1

{
v
(t+1)
i,1

[
logω−

1

2
log 2π− logσ−

(x− µ1)
2

2σ2

]

+v
(t+1)
i,2

[
log(1−ω) −

1

2
log 2π− logσ−

(x− µ2)
2

2σ2

]}
To maximize Q we compute its partial derivatives:

∂Q

∂ω
=

{
n∑
i=1

v
(t+1)
i,1

}
1

ω
−

{
n∑
i=1

v
(t+1)
i,2

}
1

1−ω
(4)

∂Q

∂µk
= −

n∑
i=1

v
(t+1)
i,k

1

σ2
(xi − µk) (5)

∂Q

∂σ
=

n∑
i=1

2∑
k=1

v
(t+1)
i,k

{
−
1

σ
+
1

σ3
(xi − µk)

2

}
(6)

By setting (4) equal to zero we get{
n∑
i=1

v
(t+1)
i,2

}
ω(t+1) =

{
n∑
i=1

v
(t+1)
i,1

}(
1−ω(t+1)

)
⇒

{
n∑
i=1

v
(t+1)
i,1

}
=

{
n∑
i=1

v
(t+1)
i,1 +

n∑
i=1

v
(t+1)
i,2

}
ω(t+1)

⇒ ω(t+1) =

∑n
i=1 v

(t+1)
i,1∑n

i=1 v
(t+1)
i,1 + v

(t+1)
i,2

=
1

n

n∑
i=1

v
(t+1)
i,1 .

(Note that, by definition, v(t)i,1 + v
(t)
i,2 = 1, and therefore the

∑n
i=1 v

(t)
i,1 +

v
(t)
i,2 = n.) Hence, the partial estimator of ω is just the average of the proba-

bilities that observations belong to component 1. When the components are
well separated, the values of vi,k will all be close to either 0 or 1, and there-
fore the partial estimate of ω will be approximately equal to the fraction of
observations that come from component 1.

By setting (5) to zero we get

0 =

n∑
i=1

v
(t+1)
i,k

(
xi − µ

(t+1)
k

)
⇒

n∑
i=1

v
(t+1)
i,k xi =

n∑
i=1

v
(t+1)
i,k µ

(t+1)
k

⇒ µ
(t+1)
k =

∑n
i=1 v

(t+1)
i,k xi∑n

i=1 v
(t+1)
i,k

.

Note that the partial estimator for µk is a weighted average of the xis, with
the weight associated with observation i being proportional to the proba-
bility that such observation was generated by component k. Again, if the
components are well separated and values of vi,k are all close to either 0 or

18 maximum likelihood estimation for mixture models

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

x

Tr
ue

 d
en

si
ty

Figure 9: True density and observations used to illustrate the EM algorithm for fit-
ting a location mixture of two univariate Gaussian distributions.

1, this weighted average is roughly the average of the observations coming
from component k.

Finally, making (6) equal to zero,

n∑
i=1

2∑
k=1

v
(t+1)
i,k =

(
1

σ(t+1)

)2 n∑
i=1

2∑
k=1

v
(t+1)
i,k

(
xi − µ

(t+1)
k

)2

⇒ σ(t+1) =

√√√√√∑ni=1∑2k=1 v(t+1)i,k

(
xi − µ

(t+1)
k

)2
∑n
i=1

∑2
k=1 v

(t+1)
i,k

.

The code contained in the file EM_univariate_normal.R implements this
algorithm and uses it to fit the model to a simulated data set generated from
a true model with ωTrue = 0.6, µ1,True = 0, µ2,True = 4 and σTrue = 1, i.e.,

fTrue(x) = 0.6
1√
2π

exp
{
−
x2

2

}
+ 0.4

1√
2π

exp
{
−
(x− 4)2

2

}
.

(See Figure 9.) Note that the code fixes the seed of the random number
generator in order to make the results reproducible. We adopt this practice
for all of our examples in this course, but you will want to remove this line
of code when writing the algorithms for other data sets.

For ε = 10−5 the algorithm converges for this data set in 11 iterations,
yielding the following maximum likelihood estimates: ω̂ = 0.6106, µ̂1 =

2.2 the em algorithm for a location mixture of two gaussian distributions 19

2 4 6 8 10

−340

−320

−300

−280

−260

−240

Index

Q

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

s = 11 Q = −243.8734

x

D
en

si
ty

Truth
Estimate

Figure 10: Value of the expected loglikelihood Q as a function of the iteration num-
ber (top panel) and a comparison of the maximum likelihood estimate f̂ at
convergence against the true density fTrue (bottom panel) for a simulated
dataset of 120 observations. The dots at the bottom of the plot correspond
to the data, with the colors of the dots representing the true components
that generated each of the observations.

20 maximum likelihood estimation for mixture models

−0.0949, µ̂2 = 4.8287 and σ̂ = 0.9463. The evolution of the objective func-
tion Q used to monitor convergence together with a graph of the estimated
density

f̂(x) = ω̂
1√
2πσ̂

exp
{
−
(x− µ̂1)

2

2σ̂2

}
+ (1− ω̂)

1√
2πσ̂

exp
{
−
(x− µ̂2)

2

2σ̂2

}
,

the true distribution fTrue and the data can be seen in Figure 10. Note that
the objective Q is strictly increasing. This should not be a surprise, as the
EM algorithm is guarranteed to monotonically converge to a local maximum.
Also, note that in this case the estimate of the density is very close to the
true density of the data in spite of the relatively small sample size.

2.3 general location and scale mixtures of p-variate gaus-
sian distributions

The expressions used for the updates of the EM algorithm for a location and
scale mixture of K q-variate Gaussian distributions

f(x) =

K∑
k=1

ωk

(
1

2π

)q/2
|Σk|

−1/2 exp
{
(x− θk)

T Σ−1k (x− θk)
}

,

can be obtained in a very similar way:

v
(t+1)
i,k =

ω
(t)
k |Σ

(t)
k |−

1
2 exp

{
−12 (x− µ

(t)
k)T

[
Σ
(t)
k

]−1
(x− µ

(t)
k)

}
∑K
l=1ω

(t)
l |Σ

(t)
l |−

1
2 exp

{
−12 (x− µ

(t)
l)t

[
Σ
(t)
l

]−1
(x− µ

(t)
l)

}

ω
(t+1)
k =

∑n
i=1 v

(t+1)
i,k∑K

l=1

∑n
i=1 v

(t+1)
i,l

µ
(t+1)
k =

1∑n
i=1 v

(t+1)
i,k

n∑
i=1

v
(t+1)
i,k xi

Σ
(t+1)
k =

1∑n
i=1 v

(t+1)
i,k

n∑
i=1

v
(t+1)
i,k

(
xi − µ

(t+1)
k

)(
xi − µ

(t+1)
k

)T
The R code in the file EM_multivariate_normal.R provides an implemen-

tation of this algorithm. Again, the implementation is illustrated using a
simulated data set, but in this case q = 2 and K = 3. Figure 11 shows the
contour plots associated with the true components of the mixture, as well
as the random sample used in the illustration. Figure 12 shows the evolu-
tion of the objective function Q, as well as contour plots of the components
estimated by the EM algorithm. For ε = 10−5 the EM algorithm converges
after 12 iterations. Note that the algorithm seems to misclassify observation
54, which leads to underestimating the variance of the top left component
of the mixture.

2.3 general location and scale mixtures of p-variate gaussian distributions 21

−4 −2 0 2 4 6

−
2

0
2

4
6

8

x1

x 2

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33
34

35

36

37

38

39

40
41

42

43

44

45

4647

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64
65

66

67

68

69

70

71

72

73
74

75

76

77

78

79

80

81

82

83

84

85

86

87

88
89

90

91

92

93

94

95

9697

98

99 100
101

102

103

104

105

106

107

108

109

110

111

112

113

114115

116
117

118

119
120

Figure 11: True density and observations used to illustrate the EM algorithm for fit-
ting a location and scale mixture of three bivariate Gaussian distributions.

22 maximum likelihood estimation for mixture models

2 4 6 8 10 12

−580
−560
−540
−520
−500
−480
−460

Index

Q

−4 −2 0 2 4 6

−
2

0
2

4
6

8

s = 12 Q = −455.1706

x1

x 2

Figure 12: Value of the expected loglikelihood Q as a function of the iteration num-
ber (top panel) and a contour plots of the maximum likelihood estimate f̂
(bottom panel) at convergence for a simulated dataset of 120 observations.
The dots correspond to the data, with the colors of the dots representing
the true components that generated each of the observations.

3B AY E S I A N I N F E R E N C E F O R F I N I T E M I X T U R E M O D E L S

We discuss now Bayesian inference for the mixture model with density/prob-
ability mass function

f(x) =

K∑
k

ωkgk(x | θk).

Bayesian inference requires that we elicit prior distributions for the vec-
tor of weights (ω1, . . . ,ωK) and each of the component-specific parameters
θ1, . . . , θk. We will adhere to standard practice and use a Dirichlet prior for
ω = (ω1, . . . ,ωK),

p(ω) =
Γ
(∑K

k=1 ak

)
∏K
k=1 Γ(ak)

K∏
k=1

ω
ak−1
k ,

K∑
k=1

ωk = 1.

The symmetric version a1 = · · · = aK = a is popular, particularly the case
a = 1 (which corresponds to a uniform prior on the simplex). In the case
of the θks, the choice of priors depends on the form of g1, . . . ,gK, but often
implies that assumption of independence across k. Furthermore, when a
conjugate or conditionally conjugate prior exists for gk, the prior for θk is
usually chosen to be in that conjugate family of priors.

It is very important not to use improper priors in the context of mixture
models, as they might easily lead to improper posteriors. This is specially
true when we are interested in selecting the number of components K based
on the data (see Chapter 5). The warning extends to proper but flat priors
that, in the limit, become improper. In general priors should be chosen so
that the a priori support of f roughly matches the support of the observed
data.

3.1 markov chain monte carlo algorithms for mixture mod-
els

Markov chain Monte Carlo (MCMC) algorithm are typically used to per-
form Bayesian inference in complex models. MCMC algorithms repeatedly
sample from the full conditional distributions of each (block of) parameters
given fixed values for the rest. After an appropriate burn-in period, they
generate samples that are dependent but identically distributed according
to the posterior distribution of interest.

To develop a MCMC algorithm for mixture models we will use the hier-
archical representation of the likelihood,

p(x, c | θ,ω) = p(x, | c, θ)p(c | ω),

where

p(x, | c, θ) =
n∏
i=1

gci(xi | θci),

p(c | ω) =

n∏
i=1

K∏
k=1

ω
1(ci=k)
k =

K∏
k=1

ω
∑n
i=1 1(ci=k)

k .

23

24 bayesian inference for finite mixture models

When combined with the priors this leads to a joint posterior distribution
of the form:

p(c, θ,ω | x) ∝

{
n∏
i=1

gci(xi | θci)

}{
n∏
i=1

K∏
k=1

ω
1(ci=k)
k

}
p(ω)p(θ).

Each of the full conditional distributions can be derived from this joint
posterior by retaining the terms that involve the parameter of interest, and
recognizing the product of the selected terms as the kernel of a known
family of distributions. For example, in the case of the ω, the only two
relevant terms are p(c | ω) and p(ω). Furthermore, since p(ω) ∝

∏K
k=1ω

ak
k ,

the full conditional distribution of the weights is given by

p(ω | c, θ, x) ∝ p(c | ω)p(ω) =

K∏
k=1

ω
ak+

∑n
i=1 1(ci=k)−1

k .

This clearly corresponds to the kernel of another Dirichlet distribution
with updated parameters

a∗k = ak +mk, k = 1, . . . ,K,

where mk =
∑n
i=1 1(ci = k) is the number of observation coming from

component k. For small values of ak the expected value of the weights under
this full conditional distribution roughly correspond to the proportion of
observations in the sample that have been assigned to each component.

Similarly, for the full conditional of ci we have

p(ci | c1, . . . , ci−1, ci+1, cn, θ,ω, x) ∝ p(xi | ci, θ)p(ci | ω).

Hence,

p(ci = k | c1, . . . , ci−1, ci+1, cn, θ,ω, x) =
ωkgk(xi | θk)∑K
l=1ωlgl(xi | θl)

.

(Note the similarity with the formula for the expected weights vi,k in the
EM algorithm.) Finally, the posterior for each θk reduces to

p(θk | c, θ1, . . . , θk−1, θk+1, . . . , θK,ω, x) ∝

p(θk | θ1, . . . , θk−1, θk+1, . . . , θK)
∏
i:ci=k

p(xi | θk)

In the most common case in which the priors for θk are independent this
is simply:

p(θk | c, θ1, . . . , θk−1, θk+1, . . . , θK,ω, x) ∝ p(θk)
∏
i:ci=k

p(xi | θk)

3.2 the mcmc algorithm for a location mixture of two gaus-
sian distributions

As in Chapter 2, we proceed to derive the full conditionals for a mixture of
two univariate normal distributions:

f(x | ω,µ1,µ2,σ) = ω
1√
2πσ

exp
{
−
(x− µ1)

2

2σ2

}
+ (1−ω)

1√
2πσ

exp
{
−
(x− µ2)

2

2σ2

}
.

3.2 the mcmc algorithm for a location mixture of two gaussian distributions 25

We use a beta distribution with parameters a1 = 1 and a2 = 1 for ω
(which corresponds to a uniform distribution, and is just a special case of
the Dirichlet distribution when K = 2), independent Gaussian priors for
each µk so that µk ∼ N(η, τ2), i.e.,

p(µk) =
1√
2πτ

exp

{
−
(µk − η)

2

2τ2

}
,

and an inverse Gamma prior with shape parameter a and scale parameter
b for σ2, i.e.,

p(σ2) =
1

baΓ(a)

(
1

σ2

)d+1
exp
{
−
q

σ2

}
.

In practice, in the absence of real prior information we typically employ the
observed data to guide the selection of the hyperparameter η, τ2, d and q, in
an approach that is reminiscent of empirical Bayes. In particular, we attempt
to make the means of the different component lie in the same support of the
observed data, so we take η to be approximately equal the mean (or median)
of the observations, and τ2 to be roughly equal to their variance. Similarly,
for the prior on the variance σ2 we set d = 2 (which implies that E(σ2) = q
and an infinite prior variance) and q to be roughly equal to the variance
of the observations. Posteriors are often not very sensitive to changes on
the prior means that remain within an order of magnitude of the values
suggested above.

Under the priors just discussed we have:

p(µk | c,µ1, . . . ,µk−1,µk+1, . . . ,µK,ω, x)

∝ exp

{
−
(µk − η)

2

2τ2

} ∏
i:ci=k

exp
{
−
(xi − µk)

2

2σ2

}

∝ exp

{
−
1

2

[
mk

µ2k
σ2

− 2
µk
∑
i:ci=k

xi

σ2
+
µk
τ2

− 2
µkη

τ2

]}

∝ exp

{
−
1

2

[
mk
σ2

+
1

τ2

] [
µk −

1
σ2

∑
i:ci=k

xi +
η
τ2

mk
σ2

+ 1
τ2

]}
,

which is just the kernel of a normal distribution with updated mean

η∗k =
1
σ2

∑
i:c=k xi +

η
τ2

mk
σ2

+ 1
τ2

and updated standard deviation

τ∗k =

[
mk
σ2

+
1

τ2

]−1/2
.

Finally,

p(σ2 | c,µ,ω, x) ∝
(
1

σ2

)d+1
exp
{
−
q

σ2

}
(
1

σ2

)n/2
exp

{
−
1

2σ2

n∑
i=1

(xi − µci)
2

}

=

(
1

σ2

)n/2+d+1
exp
{
−
1

σ2

[∑n
i=1(xi − µci)

2

2
+ q

]}
,

26 bayesian inference for finite mixture models

Figure 13: Trace plot of the unnormalized posterior distribution for a mixture of two
univariate Gaussian distributions fitted to our simulated dataset.

which is the kernel of another inverse Gamma distribution with shape d∗ =
n/2+ d and rate parameter

q∗ =
1

2

n∑
i=1

(xi − µci)
2 + q.

The code contained in the file MCMC_univariate_normal.R implements
this algorithm and tests it in the same data set we used in Section 2.2. Fig-
ure 13 presents the trace of the (unnormalized) posterior distribution for
the 6,000 samples generated by the algorithm. The graph suggests that the
MCMC algorithm converges quickly and that the mixing of is reasonable.
Hence, we discard the first 1,000 iterations as burn-in and use the remain-
ing 5,000 to carry out our posterior inference.

The posterior mean and 95% symmetric credible intervals for the param-
eters in the model are presented in Table 1. Note that the posterior means
are very close to the maximum likelihood estimators we reported in Section
2.2.

Figure 14 shows the posterior mean density along with pointwise 95%
credible intervals for that density. Note that the estimate looks very similar
to the true density that generated the data, and that there is little uncertainty
about the multimodality of the distribution.

3.2 the mcmc algorithm for a location mixture of two gaussian distributions 27

Table 1: Posterior estimates for the parameters of the two-component mixture model
for our simulated data set.

Parameter Posterior mean 95% credible interval

ω 0.6104 (0.5217, 0.6971)

µ1 -0.0942 (-0.3164, 0.1325)

µ2 4.8275 (4.5483, 5.1081)

σ 0.9563 (0.8417, 1.0941)

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

D
en

si
ty

Figure 14: Posterior mean and pointwise 95% credible intervals for our Bayesian den-
sity estimate, along with 50 randomly generated samples from it.

28 bayesian inference for finite mixture models

3.3 general location and scale mixtures of p-variate gaus-
sian distributions

The previous MCMC algorithm can be extended to a location and scale
mixture of K multivariate normal distributions, each with its own mean and
variance-covariance matrix:

K∑
k=1

ωk

(
1

2π

)p/2
|Σk|

−1/2 exp
{
(x− µk)

T Σ−1k (x− µk)
}

as long as we assume a multivariate Gaussian prior on the mean with mean
b and variance B and an inverse Wishart prior for the covariance matrices
with parameters ν and S. Since these priors are conditionally conjugate, the
full-conditional posterior distribution for µk and Σk turn out to also be
Gaussian and inverse Wishart, respectively. In the case of µk, the updated
parameters are

b∗k =
(
B−1 +mkΣ

−1
k

)−1B−1b+ Σ−1k ∑
i:ci=k

xi


and

B∗k =
(
B−1 +mkΣ

−1
k

)−1
,

while the updated parameters for Σk are

ν∗k = ν+mk

and

S∗k = S+
∑
i:ci=k

(xi − µk) (xi − µk)
T .

The file MCMC_multivariate_normal.R contains an implementation of this
code, which we illustrate with the same simulated data set used in Sec-
tion 2.3 (see Figure 11). We run the algorithm for 1,000 iterations. Figure
15 shows a trace plot of the unnormalized posterior distribution. As in the
univariate case, the algorithm seems to converge quite quickly and mix well.
Figure 16 shows an estimate of the mixture density based on only the last
iteration of the MCMC algorithm, which confirms that the posterior distri-
bution seems to have converged.

3.3 general location and scale mixtures of p-variate gaussian distributions 29

Figure 15: Trace plot of the unnormalized posterior distribution for a mixture of
three bivariate Gaussian distributions fitted to our simulated dataset.

30 bayesian inference for finite mixture models

−4 −2 0 2 4 6

−
2

0
2

4
6

8
s = 1000 logpost = −456.6914

x1

x 2

Figure 16: Estimate of the mixture density for the three-component mixture of bi-
varaite densities based on the last iteration of the MCMC algorithm.

4A P P L I C AT I O N S O F M I X T U R E M O D E L S

4.1 density estimation

The goal in density estimation tasks is to generate flexible (non-parametric)
estimates of the probability density function that generated an independent
and identically distributed sample x1, . . . , xn. We are already familiar with
this application, as we have implicitly used it to motivate mixture models.

The most widely used approach to density estimation is kernel density
estimation, which relies on estimators of the form

f̃(x) =
1

n

n∑
i=1

1

h
g

(
1

h
||x− xi| |

)
, (7)

where g is a density (often refereed to as the kernel). The scale parameter h is
often called the bandwidth, and is usually estimated using generalized cross-
validation. Kernel density estimators can be seen as smoothed versions of
the empirical distribution function

∑n
i=1

1
nδxi(x) (recall that δa(·) repre-

sents Dirac’s delta function at a). The smoothing arises from a convolution
with the scaled kernel 1hg

(
x
h

)
.

Note that (7) looks like a mixture model with n components (as many as
observations) and equal weights for all its components. This becomes even
clearer if you consider the widely used Gaussian kernel density estimator:

f̃(x) =

n∑
i=1

1

n

1√
2πh

exp

{
1

2

(
x− xi
h

)2}
. (8)

Note that this is a location mixture of n normals with uniform weights
ω1 = ω2 = · · · = ωn = 1/n, component-specific means that are equal to
the observations in the sample, and common standard deviation h for all
components.

In order to understand the relationship between kernel density estimation
and mixture models it is useful to contrast (8) with the density estimate

f̂(x) =

K∑
K=1

ω̂k
1√
2πσ̂

exp
{
1

2σ̂2
(x− µ̂k)

2

}
(9)

obtained by plugging-in the maximum likelihood estimates of the param-
eters, ω̂1, . . . , ω̂K, µ̂1, . . . , µ̂K and σ̂ of a location mixture of K univariate
Gaussian distributions.

Recall that the maximum likelihood estimator for µk and ωk under the
mixture model correspond, roughly speaking, to the mean and the fraction
of observations in the group, respectively. In the limiting case K = n, these
become the value of the single observation in the group, and 1/n. These are
exactly the values used by the kernel density estimator. Note, however, that
when K = n the maximum likelihood estimator for σ does not exist. Indeed,
σmust be strictly positive and a direct application of the formula we derived
in Chapter 2 yields 0 as the optimal value for σ̂. Another way to interpret
this observation is to realize that, when K = n, the estimate f̂ reduces to the
empirical cumulative distribution function. In fact, this highlights that in

31

32 applications of mixture models

estimating location mixtures there is a clear trade-off between the number
of components and the variance of those components: the more components
are included, the lower the variance will tend to be. We will explore this
trade-off in Chapter 5.

The connection we just highlighted allows us to use mixture models to
generalize kernel density estimators in a number of ways. For example by
considering location and scale mixtures of two-parameter kernels such as
the Gaussian (i.e., by allowing both the mean and the variance of the com-
ponents to be different) we obtain adaptive-bandwidth kernel density esti-
mates that allow the degree of smoothness induced by the convolution to
be different in various regions of the support. Similarly, if a Bayesian pro-
cedure is used instead to estimate the mixture, the predictive distribution
p(x | x1, . . . , xn) obtained from the fitting procedure can be interpreted as a
Bayesian version of kernel density estimation.

To illustrate the use of mixture models for density estimation we use the
well-known galaxies data set, which contains the velocities (in km/sec)
of 82 galaxies from 6 well-separated conic sections of an unfilled survey
of the Corona Borealis region. Multimodality in such surveys is evidence
of voids and superclusters in the far universe. We fit location mixtures of
K = 6 Gaussian distributions corresponding to (9) using both an EM and
a MCMC algorithm, and compare the results against the Gaussian kernel
density estimate corresponding to (8), which is obtained using the R function
density. The code is contained in galaxies_density_estimation.R.

Figure 17 contains all three density estimates as well pointwise credible
bands associated with the Bayesian posterior distribution. Note that all three
estimates agree quite closely in terms of the shape of the tails of the distri-
bution. However, they somewhat disagree in terms of the middle section
of the density. In particular, while the estimators based on mixture models
tend to clearly identify two modes in this region, the kernel density estimate
tends to smooth out the density, suggesting a more unimodal (albeit skewed)
shape. Note, however, that the Bayesian estimate obtained using the MCMC
algorithm seems to be overall closer to the kernel density estimate than the
frequentist estimator obtained using the EM algorithm.

It should be clear from this example that label switching is not an issue
when using mixture models for density estimation since, in this case, we are
only interested in evaluating the density f, which is invariant to permuta-
tions in the labels.

4.2 clustering (unsupervised classification)

The goal in clustering tasks (sometimes called unsupervised classification
tasks in the machine learning literature) is to divide a heterogeneous sample
into a set of homogeneous groups. This needs to be accomplished in the
absence of any labeled data that provides prior information about the shape
of the groups (hence, the term “unsupervised” classification). For example,
measurements of the physical characteristics of a number of plants might
be available and we are interested in dividing the sample into groups that
correspond to various species.

There is a rich literature covering a variety of approaches to clustering.
K-means clustering is particularly relevant for our discussion as it directly
connects with mixture models. K-means clustering assumes that there ex-
ists labels s1, . . . , sn ∈ {1, . . . ,K} that divide the sample into K “spherical”
clusters in Euclidean space, which are centered at locations γ1, . . . ,γK. The

4.2 clustering (unsupervised classification) 33

5000 10000 15000 20000 25000 30000 35000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

Velocity

D
en

si
ty

KDE
EM
MCMC

Figure 17: Comparison of a kernel density estimate with estimates from a mixture
model with K = 6 components obtained using an EM and a MCMC al-
gorithm for the galaxies data set. The grey area corresponds to 95%
pointwise credible bands for the posterior distribution of the predictive
distribution p(x | x1, . . . , xn), which provides a measure of uncertainty
associated with the Bayesian point estimator.

34 applications of mixture models

clusters are estimated iteratively: given an initial guess for the centers, we
proceed by first assigning observations to the cluster corresponding to the
closest center γk (measured in Euclidean distance), and then recomputing
the location of the centers as the average of the observations assigned to the
cluster. These two steps are repeated until the location of the centers does
not change from one iteration to the next.

Inferences for the auxiliary variables c1, . . . , cn that we introduced to de-
rive the EM and MCMC algorithms for mixture models can be used to solve
clustering problems, as they essentially play the same role as the indicators
s1, . . . , sn that appear in the k-means clustering algorithm. Indeed, remem-
ber that ci can be interpreted as the label of the component that generated
observation xi. For example, if the EM algorithm is used for inference, it is
natural to set

ĉi = arg max
k
v̂i,k,

where the v̂i,ks correspond the value of weights at the last iteration of the
algorithm. (Recall that vi,k is the probability that xi comes from component
k, so we are assigning xi to the component with the largest probability.)

There is a close relationship between k-means clustering and Gaussian
mixture models. To highlight this relationship, consider a location mixture
of p-variate Gaussian distribution in which all components have the same
variance-covariance matrix, σ2I, and where the weights are assumed uni-
form and known, i.e.,

f(x) =

K∑
k=1

1

K

(
1√
2πσ

)p
exp
{
−
1

2σ2
(x− µk)

T (x− µk)

}
(10)

and compare the steps associated with the EM algorithm used to fit this
model with the steps used to conduct k-means clustering (recall that (x−

µk)
T (x− µk) = ||x− µk||

2):

K-means clustering EM algorithm

Assignment step: Set

c
(t+1)
i = arg min

k
||xi − γ

(t)
k ||

E step: Set

v
(t+1)
i,k ∝ exp

{
−
1

2σ2
||xi − µ

(t)
k ||2

}

Center update step: Set

γ
(t+1)
k =

∑n
i=1 1

(
c
(t+1)
i = k

)
xi∑n

i=1 1
(
c
(t+1)
i = k

)
M step: Set

µ
(t+1)
k =

∑n
i=1 v

(t+1)
i,k xi∑n

i=1 v
(t+1)
i,k

To contrast the Assignment step against the E step, note that for any σ

arg min
k

||xi − µk|| = arg max
k

exp
{
−
1

2σ2
||xi − µk||

2

}
.

Furthermore, remember that, for problems with well separated clusters,
there is one component k for which vi,k ≈ 1, while vi,k ≈ 0 for all other
components. Hence, for well separated components we have that v̂i,k ≈
1(ĉi = k) for all i and k. And because of this, we will have γ̂k ≈ µ̂k in the

4.2 clustering (unsupervised classification) 35

Sepal.Length

4.5 6.0 7.5

2.
0

3.
0

4.
0

s
sss
s

s
s s

s s

s
s
ss

s
s

s
s

ss
s

ss
ss
s
sssss

s

ss

ss
ss

s
ss

s

s
s
s

s

s

s
s

s cc c

c
cc

c

c
cc

c

c

c

cc cc
c

c
c

c
c
c

cccccc
ccc
cc

c
c

c

c

c
cc

c
c

c
c
cc c

c
c

g

g
ggg g

g
g

g

g
g
g

g
g
g

gg

g

g
g

g
g gg

g g
ggg gg

g

ggg
g

g
gg ggg

g
ggg

g
g

g
g

4.5 6.0 7.5

1
3

5
7

ssss s ss ss s ssss ssss ssss
s

ssssssss sssss sss ssss sssss ss

cc c
c

cc c

c

c
cc

cc
c

c
ccc c

c
c
c
cccc

ccc
cccc

c
c c ccccc

c
c

c
ccc c

c
c

g
g

ggg
g

g

g
g g

gg g
gg gg

gg

g
g

g

g

g
g g

gg
g gg

g
g
g

g
g

gg
g

gggg
gg
ggggg

4.5 6.0 7.5

0.
5

1.
5

2.
5

ssss s ss ss s ssss ssss sssss
s

sssssss s
ssss sss ssss

sssss ss

cc cc cc
c

c
cc

c
c
c
cc cc

c
c

c

c
cccccc

cc
cccc

cc c ccccc ccc
ccc cc c

g

g g
g
g g

g gg

g
gg gg

g g
g

gg

g

g
g gg

g
ggg

g
g
g gg

gg

gg

gg
g

gg
g

ggg
gg
g

g

2.0 3.0 4.0

4.
5

6.
0

7.
5

ssss
s

s

s
s

s
s

s
ss

s

s sss
s
ss s

s
sss sssss
s ssss
s
s

s
ss

s s
s ss s

s
ss

c
c

c

c

c

c
c

c

c

cc

cc c
c

c

cc
c

c ccc cc
ccc

cccc cc
c

c
c

c
ccc
cc

c
c cc

c

c
c

g
g

g

gg

g

g

g
g

g
gg

g

g g
gg

gg

g

g

g

g

g
g

g

ggg

gg
g

ggg

g

gg
g

ggg

g

ggg
g g gg Sepal.Width

2.0 3.0 4.0

1
3

5
7

ssss s sssss ssss s sss sss s
s

sss sssss s ssss sss sss s s s
s ss ss

ccc
c

cc c

c

c
cc

cc
c
c

cccc
c

c
c

c ccc
cc
c

ccc c
c

c ccc ccc
c

c
c

c ccc

c
c

g
g

ggg
g

g

g
g g

gg g
g g gg

gg

g
g

g

g

g
gg

gg
ggg g
g
g

g
g

gg
g
gggg
gg

gg g gg

2.0 3.0 4.0

0.
5

1.
5

2.
5

ssss s sssss ssss s sss sss ss
s
ss sssss s

ssss sss sss s
s ss ss ss

cccc cc
c

c
cc

c
c

c
cccc

c
c

c

c
cc
cccc

cc
ccc c
c c ccc ccc ccc
c cccc c

g

g g
g
gg

g gg

g
gg gg

g g
g

gg

g

g
ggg

g
ggg

g
g

g gg

gg

g g

gg
g
gg

g
ggg

g g
g

g

1 3 5 7

4.
5

6.
0

7.
5

ssss
s
s

s
s
s
s
s
ss

s

ssss
s
sss

s
ssss
ss
ss
sssss
s
s
s
ss
ss
sssss
ss

c
c
c

c

c

c
c

c

c

cc

cc c
c

c

cc
c

c cc cccc
cc

ccccc
c

c
c
c

c
ccc

cc

c
ccc
c

c
c

g
g

g

gg

g

g

g
g
g

gg
g

gg
gg

gg

g

g

g

g

g
g
g

gg g

gg
g

ggg

g

ggg

ggg

g

ggg
gggg

1 3 5 7

2.
0

3.
0

4.
0

s
sss
s
s

ss
ss

s
s
ss

s
s
s
s
ss
s
ss
ss
s
sssss
s

ss

ss
ss

s
ss

s

s
s
s

s

s

s
s
s ccc

c
cc
c

c
cc

c

c

c

cc cc
c
c

c

c
c

c
cccccc

ccc
c c

c
c
c

c

c
cc

c
c

c
c
ccc

c
c

g

g
ggg g

g
g

g

g
g
g
g

g
g
gg

g

g
g

g
g gg

gg
gg ggg

g

ggg
g

g
ggggg

g
ggg

g
g
g

g Petal.Length

1 3 5 7

0.
5

1.
5

2.
5

sssssssssssssss
ssssssss
s
sssssssssssssssssss

sssssss

cccc cc
c

c
cc

c
c
c

cc cc
c
c

c

c
c c

cccc
cc

cccc
ccccccccccc

ccccc c

g

g g
g
g g

g gg

g
gggg
gg
g

gg

g

g
g gg

g
ggg

g
g
gg

g

gg

gg

gg
g
gg

g
ggg

gg
g

g

0.5 1.5 2.5

4.
5

6.
0

7.
5

ssss
s

s

s
s
s

s
s
ss

s

ssss
s
sss

s
ssssss

ss
sssss

s
s
s
ss
ss

sssss
ss

c
c
c

c

c

c
c

c

c

cc

cc c
c

c

cc
c

c ccccc
cc c
ccccc c
c
c

c
c
ccc
cc

c
ccc
c

c
c

g
g

g

g g

g

g

g
g

g
gg
g

g g
gg

gg

g

g

g

g

g
g

g

gg g

g g
g

ggg

g

gg
g

g gg

g

ggg
gg gg

0.5 1.5 2.5

2.
0

3.
0

4.
0

s
sss
s

s
ss

ss

s
s

ss

s
s
s

s
ss

s
ss
ss

s
sssss
s

ss

ss
ss

s
ss

s

s
s

s

s

s

s
s
s ccc

c
cc
c

c
cc

c

c

c

ccccc
c

c

c
c

c
cccc cc

ccc
c c

c
c

c

c

c
cc
c

c
c

c
ccc

c
c

g

g
gg gg

g
g
g

g
g

g
g

g
g

gg

g

g
g

g
ggg

gg
gg gg g

g

ggg
g
g

gg g gg
g

gg
g

g
g

g
g

0.5 1.5 2.5

1
3

5
7

ssssssssssssssssssssss
s

ssssssssssssssssssss ss
sssss

ccc
c

cc c

c

c
cc
cc

c
c
ccc c

c
c

c
cccc

c c
c

cccc
c

ccccccc
c

c
c

cccc

c
c

g
g

gg g
g

g

g
g g

ggg
g ggg

gg

g
g

g

g

g
gg

gg
gg gg
g

g
g

g
gg

g
g g

gg
gg
ggg gg

Petal.Width

Figure 18: Pair plots for the iris dataset. Letters correspond to the true species of
each sample (the true cluster labels, s for setosa, g for virginica, and c for
versicolor).

optimum. Hence, we can think of k-means clustering as a very close approx-
imation to the results that would be obtained by using the EM algorithm to
fit the K-component mixture in (10).

By casting k-means clustering as a special case of a mixture model we
can easily identify some of the shortcomings of the algorithm and suggest
possible ways in which they can be addressed. For example, it should be
clear that k-means expects clusters to be spherical, of about the same size,
and to be more or less equally represented in the sample. Many data sets
you will observe in real life do not satisfy these requirements, and for those
tsetse k-means clustering will be a poor tool. One way to address this is to
use a more general location-scale mixture model that allows non-uniform
weights as well as different variance-covariance matrices for each of the
components.

We illustrate the use of mixture models for clustering using the Fisher’s
famous iris data set. The data set gives the measurements in centimeters of
the length and width of both the sepal and petal for 50 flowers from each of
3 species of iris plants (Iris setosa, Iris versicolor, and Iris virginica). Pair plots
of the raw data can be seen in Figure 18.

We fit a location and scale mixture of tetra-variate Gaussian distributions
using an EM algorithm (recall Section 2.3), and compare the results with
those generated by the R function kmeans. The resulting partitions of the

36 applications of mixture models

Sepal.Length

4.5 6.0 7.5

2.
0

3.
0

4.
0

2
222
2

2
2 2

2 2

2
2
22

2
2

2
2

22
2

22
22
2
22222

2

22

22
22

2
22

2

2
2
2

2

2

2
2

2 33 3

3
33

3

3
33

3

3

3

33 33
3

1
3

1
3
1

333313
333
31

3
3

3

3

3
33

3
3

3
3
33 3

3
3

1

1
111 1

1
1

1

1
1
1

1
1
1

11

1

1
1

1
1 11

1 1
111 11

1

111
1

1
11 111

1
111

1
1

1
1

4.5 6.0 7.5

1
3

5
7

2222 2 22 22 2 2222 2222 2222
2

22222222 22222 222 2222 22222 22

33 3
3

33 3

3

3
33

33
3

3
333 1

3
1
3
1333

313
3333

1
3 3 33333

3
3

3
333 3

3
3

1
1

111
1

1

1
1 1

11 1
11 11

11

1
1

1

1

1
1 1

11
1 11

1
1
1

1
1

11
1

1111
11
11111

4.5 6.0 7.5

0.
5

1.
5

2.
5

2222 2 22 22 2 2222 2222 22222
2

2222222 2
2222 222 2222

22222 22

33 33 33
3

3
33

3
3
3
33 33

3
1

3

1
313333

13
3333

13 3 33333 333
333 33 3

1

1 1
1
1 1

1 11

1
11 11

1 1
1

11

1

1
1 11

1
111

1
1
1 11

11

11

11
1

11
1

111
11
1

1

2.0 3.0 4.0

4.
5

6.
0

7.
5

2222
2

2

2
2

2
2

2
22

2

2 222
2
22 2

2
222 22222
2 2222
2
2

2
22

2 2
2 22 2

2
22

3
3

3

3

3

3
3

3

3

33

33 3
3

3

33
1

3 131 33
331

3333 31
3

3
3

3
333
33

3
3 33

3

3
3

1
1

1

11

1

1

1
1

1
11

1

1 1
11

11

1

1

1

1

1
1

1

111

11
1

111

1

11
1

111

1

111
1 1 11 Sepal.Width

2.0 3.0 4.0

1
3

5
7

2222 2 22222 2222 2 222 222 2
2

222 22222 2 2222 222 222 2 2 2
2 22 22

333
3

33 3

3

3
33

33
3
3

3331
3

1
3

1 333
313

333 3
1

3 333 333
3

3
3

3 333

3
3

1
1

111
1

1

1
1 1

11 1
1 1 11

11

1
1

1

1

1
11

11
111 1
1
1

1
1

11
1
1111
11

11 1 11

2.0 3.0 4.0

0.
5

1.
5

2.
5

2222 2 22222 2222 2 222 222 22
2
22 22222 2

2222 222 222 2
2 22 22 22

3333 33
3

3
33

3
3

3
3333

3
1

3

1
31
3333

13
333 3
1 3 333 333 333
3 3333 3

1

1 1
1
11

1 11

1
11 11

1 1
1

11

1

1
111

1
111

1
1

1 11

11

1 1

11
1
11

1
111

1 1
1

1

1 3 5 7

4.
5

6.
0

7.
5

2222
2
2

2
2
2
2
2
22

2

2222
2
222

2
2222
22
22
22222
2
2
2
22
22
22222
22

3
3
3

3

3

3
3

3

3

33

33 3
3

3

33
1

3 13 1333
31

33333
1

3
3
3

3
333

33

3
333
3

3
3

1
1

1

11

1

1

1
1
1

11
1

11
11

11

1

1

1

1

1
1
1

11 1

11
1

111

1

111

111

1

111
1111

1 3 5 7

2.
0

3.
0

4.
0

2
222
2
2

22
22

2
2
22

2
2
2
2
22
2
22
22
2
22222
2

22

22
22

2
22

2

2
2
2

2

2

2
2
2 333

3
33
3

3
33

3

3

3

33 33
3
1

3

1
3

1
333313

333
3 1

3
3
3

3

3
33

3
3

3
3
333

3
3

1

1
111 1

1
1

1

1
1
1
1

1
1
11

1

1
1

1
1 11

11
11 111

1

111
1

1
11111

1
111

1
1
1

1
Petal.Length

1 3 5 7

0.
5

1.
5

2.
5

222222222222222
22222222
2
2222222222222222222

2222222

3333 33
3

3
33

3
3
3

33 33
3
1

3

1
3 1

3333
13

3333
13333333333

33333 3

1

1 1
1
1 1

1 11

1
1111
11
1

11

1

1
1 11

1
111

1
1
11

1

11

11

11
1
11

1
111

11
1

1

0.5 1.5 2.5

4.
5

6.
0

7.
5

2222
2

2

2
2
2

2
2
22

2

2222
2
222

2
222222

22
22222

2
2
2
22
22

22222
22

3
3
3

3

3

3
3

3

3

33

33 3
3

3

33
1

3 13133
33 1
33333 1
3
3

3
3
333
33

3
333
3

3
3

1
1

1

1 1

1

1

1
1

1
11
1

1 1
11

11

1

1

1

1

1
1

1

11 1

1 1
1

111

1

11
1

1 11

1

111
11 11

0.5 1.5 2.5

2.
0

3.
0

4.
0

2
222
2

2
22

22

2
2

22

2
2
2

2
22

2
22
22

2
22222
2

22

22
22

2
22

2

2
2

2

2

2

2
2
2 333

3
33
3

3
33

3

3

3

33333
1

3

1
3

1
3333 13

333
3 1

3
3

3

3

3
33
3

3
3

3
333

3
3

1

1
11 11

1
1
1

1
1

1
1

1
1

11

1

1
1

1
111

11
11 11 1

1

111
1
1

11 1 11
1

11
1

1
1

1
1

0.5 1.5 2.5

1
3

5
7

2222222222222222222222
2

22222222222222222222 22
22222

333
3

33 3

3

3
33
33

3
3
333 1

3
1

3
1333

3 13
3333

1
3333333

3
3

3
3333

3
3

1
1

11 1
1

1

1
1 1

111
1 111

11

1
1

1

1

1
11

11
11 11
1

1
1

1
11

1
1 1

11
11
111 11

Petal.Width

Figure 19: Results for the clustering procedure for the iris data set based on a lo-
cation and scale mixture of multivariate Gaussian distributions fitted us-
ing the EM algorithm. Numbers correspond to the inferred cluster labels,
ĉ1, . . . , ĉn.

data are compared using the adjusted Rand index, which is implemented
by the function adjustedRandIndex of the package mclust. This index has
zero expected value in the case of random partitions, and it is bounded
above by 1 in the case of perfect agreement between two partitions. Note
that, for both approaches, the results presented here correspond to the best
fit from 15 independent runs of the algorithm. The reason for this multiple
runs is discussed in more detail in Chapter 5.

Figures 19 and 20 present the results generated by the EM algorithm and
a k-means clustering procedure, respectively. We can see that the group of
flowers corresponding to setosa is correctly picked out by both algorithms.
On the other hand, both procedures struggle to accurately separate virginica
and versicolor. This is not surprising since there is substantial overlap be-
tween these two species. Nonetheless, the more flexible mixture model does
a much job of separating these two groups. In particular, note that the value
of the adjusted Rand index with respect to the true partition is larger for the
mixture model (0.9039) than for k-means clustering (0.7302).

Label switching is a major issue when using mixture models for cluster-
ing applications. Note, for example, that the same solution to the clustering
problem can be represented by K! different labeling schemes. Hence, com-
parisons among multiple solutions of the problem need to carried out care-
fully. To illustrate the problem in more detail consider two of 15 solutions

4.2 clustering (unsupervised classification) 37

Sepal.Length

4.5 6.0 7.5

2.
0

3.
0

4.
0

2
222
2

2
2 2

2 2

2
2
22

2
2

2
2

22
2

22
22
2
22222

2

22

22
22

2
22

2

2
2
2

2

2

2
2

2 33 1

3
33

3

3
33

3

3

3

33 33
3

3
3

3
3
3

333313
333
33

3
3

3

3

3
33

3
3

3
3
33 3

3
3

1

3
111 1

3
1

1

1
1
1

1
3
3

11

1

1
3

1
3 13

1 1
331 11

1

131
1

1
13 111

3
111

3
1

1
3

4.5 6.0 7.5

1
3

5
7

2222 2 22 22 2 2222 2222 2222
2

22222222 22222 222 2222 22222 22

33 1
3

33 3

3

3
33

33
3

3
333 3

3
3
3
3333

313
3333

3
3 3 33333

3
3

3
333 3

3
3

1
3

111
1

3

1
1 1

11 133 11
11

3
1

3

1

3
1 1

33
1 11

1
131

1
11

3
1113
11
13113

4.5 6.0 7.5

0.
5

1.
5

2.
5

2222 2 22 22 2 2222 2222 22222
2

2222222 2
2222 222 2222

22222 22

33 13 33
3

3
33

3
3
3
33 33

3
3

3

3
333333

13
3333

33 3 33333 333
333 33 3

1

3 1
1
1 1

3 11

1
11 13

3 1
1

11

3

1
3 13

1
133

1
1
1 11

31

11

13
1

11
3

111
31
1

3

2.0 3.0 4.0

4.
5

6.
0

7.
5

2222
2

2

2
2

2
2

2
22

2

2 222
2
22 2

2
222 22222
2 2222
2
2

2
22

2 2
2 22 2

2
22

3
3

1

3

3

3
3

3

3

33

33 3
3

3

33
3

3 333 33
331

3333 33
3

3
3

3
333
33

3
3 33

3

3
3

1
3

1

11

1

3

1
1

1
11

1

3 3
11

11

3

1

3

1

3
1

1

331

11
1

131

1

11
3

111

3

111
3 1 13 Sepal.Width

2.0 3.0 4.0

1
3

5
7

2222 2 22222 2222 2 222 222 2
2

222 22222 2 2222 222 222 2 2 2
2 22 22

331
3

33 3

3

3
33

33
3
3

3333
3

3
3

3 333
313

333 3
3

3 333 333
3

3
3

3 333

3
3

1
3

111
1

3

1
1 1

11 13 3 11
11

3
1

3

1

3
11

33
111 1
131

1
11

3
1113
11

13 1 13

2.0 3.0 4.0

0.
5

1.
5

2.
5

2222 2 22222 2222 2 222 222 22
2
22 22222 2

2222 222 222 2
2 22 22 22

3313 33
3

3
33

3
3

3
3333

3
3

3

3
33
3333

13
333 3
3 3 333 333 333
3 3333 3

1

3 1
1
11

3 11

1
11 13

3 1
1

11

3

1
313

1
133

1
1

1 11

31

1 1

13
1
11

3
111

3 1
1

3

1 3 5 7

4.
5

6.
0

7.
5

2222
2
2

2
2
2
2
2
22

2

2222
2
222

2
2222
22
22
22222
2
2
2
22
22
22222
22

3
3
1

3

3

3
3

3

3

33

33 3
3

3

33
3

3 33 3333
31

33333
3

3
3
3

3
333

33

3
333
3

3
3

1
3

1

11

1

3

1
1
1

11
1

33
11

11

3

1

3

1

3
1
1

33 1

11
1

131

1

113

111

3

111
3113

1 3 5 7

2.
0

3.
0

4.
0

2
222
2
2

22
22

2
2
22

2
2
2
2
22
2
22
22
2
22222
2

22

22
22

2
22

2

2
2
2

2

2

2
2
2 331

3
33
3

3
33

3

3

3

33 33
3
3

3

3
3

3
333313

333
3 3

3
3
3

3

3
33

3
3

3
3
333

3
3

1

3
111 1

3
1

1

1
1
1
1

3
3
11

1

1
3

1
3 13

11
33 111

1

13
1

1
1
13111

3
111

3
1
1

3
Petal.Length

1 3 5 7

0.
5

1.
5

2.
5

222222222222222
22222222
2
2222222222222222222

2222222

3313 33
3

3
33

3
3
3

33 33
3
3

3

3
3 3

3333
13

3333
33333333333

33333 3

1

3 1
1
1 1

3 11

1
1113
31
1

11

3

1
3 13

1
133

1
1
11

1

31

11

13
1
11

3
111

31
1

3

0.5 1.5 2.5

4.
5

6.
0

7.
5

2222
2

2

2
2
2

2
2
22

2

2222
2
222

2
222222

22
22222

2
2
2
22
22

22222
22

3
3
1

3

3

3
3

3

3

33

33 3
3

3

33
3

3 33333
33 1
33333 3
3
3

3
3
333
33

3
333
3

3
3

1
3

1

1 1

1

3

1
1

1
11
1

3 3
11

11

3

1

3

1

3
1

1

33 1

1 1
1

131

1

11
3

1 11

3

111
31 13

0.5 1.5 2.5

2.
0

3.
0

4.
0

2
222
2

2
22

22

2
2

22

2
2
2

2
22

2
22
22

2
22222
2

22

22
22

2
22

2

2
2

2

2

2

2
2
2 331

3
33
3

3
33

3

3

3

33333
3

3

3
3

3
3333 13

333
3 3

3
3

3

3

3
33
3

3
3

3
333

3
3

1

3
11 11

3
1
1

1
1

1
1

3
3

11

1

1
3

1
313

11
33 11 1

1

13
1

1
1

13 1 11
3

11
1

3
1

1
3

0.5 1.5 2.5

1
3

5
7

2222222222222222222222
2

22222222222222222222 22
22222

331
3

33 3

3

3
33
33

3
3
333 3

3
3

3
3333

3 13
3333

3
3333333

3
3

3
3333

3
3

1
3

11 1
1

3

1
1 1

1113 311
11

3
1

3

1

3
11

33
11 11
131
1
11

3
1 1

13
11
131 13

Petal.Width

Figure 20: Results for the k-means clustering algorithms for the iris data set. Num-
bers correspond to the inferred cluster labels s1, . . . , sn.

38 applications of mixture models

produced by our previous run. Both runs converge to the same value of the
Q function (-185.0587), which is also the highest value over all 15 runs. The
two solutions are identical from the point of view of the way the observa-
tions are grouped, a fact that is confirmed if we compute the adjusted Rand
index between them (which takes the value of 1 in this case). However, if we
look at the estimated ĉis associated with both solutions we note that they
differ in that the labels for all three groups have been switched around!

QQ.sum[8]

[1] -185.0587

cc1 = apply(v.sum[8,,], 1 ,which.max)

QQ.sum[15]

[1] -185.0587

cc2 = apply(v.sum[15,,], 1 ,which.max)

adjustedRandIndex(cc1, cc2)

[1] 1

cc1[1:15]

[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

cc2[1:15]

[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

table(cc1,cc2)

cc2

cc1 1 2 3

1 0 55 0

2 0 0 50

3 45 0 0

In general, because of label switching, partitions cannot be compared by
simply looking at the inferred labels. Comparisons of partitions need to be
done using metrics that are invariant to permutations of the labels, such as
the adjusted Rand index. This is also true when employing MCMC algo-
rithms to fit Bayesian mixture models, where posterior summaries over the
partition structure need to account for the fact that different iterations of the
MCMC algorithm might be label-switched.

4.3 (supervised) classification

The goal in classification tasks is to identify to which of a set of categories
a batch of new observations (usually called the test set) belong on the basis
of a labeled training set. This task is similar to clustering (unsupervised clas-
sification), except that now a training set that provides information about
the characteristics of the groups is available. For notational convenience let
x1, . . . , xn be the n observations in the training set, with c1, . . . , cn being
their known labels, and let xn+1, . . . , xn+m denote the m observations in

4.3 (supervised) classification 39

the test set with unknown labels cn+1, . . . , cn+m that we are interested in
predicting.

For example, we might want to predict whether a group of people suf-
fers from a disease using the results from p medical tests. The training set
corresponds to measurements taken on two groups of individuals: one that
contains only healthy patients, and one that contained only diseased indi-
viduals. The test set corresponds in this case of all new patients coming into
a doctor’s office and whose disease status is unknown.

A common class of methods for classification are based on a direct appli-
cation of Bayes theorem (sometimes called naive Bayes classifier):

Pr(xi ∈ class k) =
ωkgk(xi | θk)∑K
l=1ωlgl(xi | θl)

,

with
c̃i = arg max

k
Pr(xi ∈ class k).

for i = n+ 1, . . . ,n+m. A well known example of naive Bayes classification
is linear discriminant analysis. Assume that K = 2 (like in our motivating
example) and set

gk(xi) =

(
1√
2π

)q
|Σ|−1/2 exp

{
−
1

2
(xi − µk)

TΣ−1/2(xi − µk)

}
,

i.e., the distribution of each class is q-variate normal distribution with its
own mean µk but common variance-covariance Σ. In this case

Pr(xi ∈ class 1) ∝ ω exp
{
−
1

2
(xi − µ1)

TΣ−1(xi − µ1)

}
,

while

Pr(xi ∈ class 2) ∝ ω exp
{
−
1

2
(xi − µ2)

TΣ−1(xi − µ2)

}
.

Hence, c̃i = 1 if and only if

ω exp
{
−
1

2
(xi − µ1)

TΣ−1(xi − µ1)

}
> (1−ω) exp

{
−
1

2
(xi − µ2)

TΣ−1(xi − µ2)

}
,

which, after some algebra, leads to

(xi − µ1)
TΣ−1(xi − µ1) − (xi − µ2)

TΣ−1(xi − µ2) < −2 log
ω

1−ω
.

This expression can be further simplified by noting that

(xi − µ1)
TΣ−1(xi − µ1) − (xi − µ2)

TΣ−1(xi − µ2)

=���
��

xTi Σ
−1xi − 2xiΣ

−1µ1 + µ
T
1Σ

−1µ1 −��
���xTi Σ
−1xi

+ 2xiΣ
−1µ2 − µ

T
2Σ

−1µ2

= 2xiΣ
−1(µ2 − µ1) + µ

T
1Σ

−1µ1 − µ
T
2Σ

−1µ2.

Hence, c̃i = 1 if and only if

xiΣ
−1(µ2 − µ1) < T

∗,

40 applications of mixture models

where T∗ = 1
2µ
T
2Σ

−1µ2 −
1
2µ
T
1Σ

−1µ1 − log 1−ωω is a threshold that is inde-
pendent of the observation xi. This formula just states that a linear com-
bination of the features in observation xi can be used to separate the two
classes. Hence, the name Linear Discriminant Analysis. In practice µ1, µ2 and
Σ are unknown and estimated from the training set using the corresponding
maximum likelihood estimators.

Let’s explore now the relationship between mixture models and linear
discriminant analysis. In particular, consider a three-step non-iterative al-
gorithm that resembles the EM algorithm for a mixture of two Gaussian
distributions:

• “E step”: For the observations in the training set (i.e., for i = 1, . . . ,n)
let

vi,k =

1 ci = k

0 otherwise.

• “M step:” Estimate

µ̂k =
1∑n

i=1 vi,k

n∑
i=1

vi,kxi, k = 1, 2,

Σ̂ =
1

n

n∑
i=1

2∑
k=1

vi,k(xi − µk)(xi − µk)
T ,

ω̂ =
1

n

n∑
i=1

vi,1.

• “Post-processing step:” For the observation in the test set (i.e., for
i = n+ 1, . . . ,n+m) compute

vi,1 = 1− vi,2 =
1

vi,·
ω̂ exp

{
−
1

2
(xi − µ̂1)

T Σ̂−1(xi − µ̂1)

}
,

where

vi,· = ω̂ exp
{
−
1

2
(xi − µ̂1)

T Σ̂−1(xi − µ̂1)

}
+ (1− ω̂) exp

{
−
1

2
(xi − µ̂2)

T Σ̂−1(xi − µ̂2)

}
,

and set
ĉi = arg max

k
vi,k.

This algorithm is equivalent to the linear discrimination algorithm we
discussed above. Note that there is no need for iterative steps in this case:
the labels c1, . . . , cn in the training set are known so the E step only needs
to be carried out once. Furthermore, given the labels, the MLEs µ̂1, µ̂2 and
Σ̂ (which are obtained in the M step) can be obtained explicitly in a single
step. Also note that the algorithm uses only the information in the training
set (observations 1 to n) to compute µ̂1, µ̂2 and Σ̂.

A variant of this algorithm that can be considered a semi-supervised clas-
sification algorithm uses all observations to estimate the MLEs of µ1, µ2 and
Σ instead:

4.3 (supervised) classification 41

• E step: For the observations in the training set (i.e., for i = 1, . . . ,n) let

v
(t+1)
i,k =

1 ci = k,

0 otherwise,
,

while for the observation in the test set (i.e., for i = n+ 1, . . . ,n+m)
compute

v
(t+1)
i,1 = 1− v

(t+1)
i,2 =

1

v
(t+1)
i,·

ω(t) exp
{
−
1

2
(xi − µ

(t)
1)T

[
Σ(t)

]−1
(xi − µ

(t)
1)

}
,

where

v
(t+1)
i,· = ω(t) exp

{
−
1

2
(xi − µ

(t)
1)T

[
Σ(t)

]−1
(xi − µ

(t)
1)

}
+
(
1−ω(t)

)
exp
{
−
1

2
(xi − µ

(t)
2)T

[
Σ(t)

]−1
(xi − µ

(t)
2)

}
.

• M step: Estimate

ω̂(t+1) =
1

n

n+m∑
i=1

v
(t+1)
i,1 ,

µ̂
(t+1)
k =

1∑n+m
i=1 v

(t+1)
i,k

n+m∑
i=1

v
(t+1)
i,k xi,

Σ̂(t+1) =
1

n

n+m∑
i=1

K∑
k=1

v
(t+1)
i,k (xi − µk)(xi − µk)

T .

• Post-processing step: Once the algorithm has converged, classify ob-
servations in the test set by setting

ĉi = arg max
k
vi,k

(Note that all sums in the M step go from 1 to n+m rather than just 1 to n,
and that this is an iterative algorithm for which the E and M steps need to be
repeated until convergence). When the test set is small compared with the
training set, the supervised and semi-supervised algorithms yield almost
identical results. On the other hand, when the training set is small compared
with the test set and the classes indeed satisfy the assumptions of the model
(i.e., the features are distributed a normal distributions with different means
but the same variance), the semi-supervised algorithm tends to yield more
accurate results.

By placing linear discriminant analysis in the context of mixture models
we open the door for a number of natural extensions. First, classifications
with more than two classes can be accommodated using a general mixture
with K components. Secondly, by using location and scale mixtures that
allow each class to have its own variance matrix we obtained the so-called
quadratic discriminant analysis. Furthermore, alternative families for gk can
accommodate other features of the classes such as skewness. A particularly
interesting example arises when gk is itself a mixture with L components,
leading to mixture discriminant analysis. Finally, using Bayesian methods to

42 applications of mixture models

alcohol

1
3

5
10

25
1.

5
3.

5
0.

2
0.

6
2

6
1.

5
3.

5

11 14

1 3 5

malic.acid

ash

1.5 3.0

10 25

alcalinty.ash

magnesium

80 140

1.5 3.5

total.phenols

flavonoids

1 3 5

0.2 0.6

nonflavanoid.phenols

proanthocyanins

0.5 2.5

2 6

color.intensity

hue

0.6 1.4

1.5 3.5

od

11
14

1.
5

3.
0

80
14

0
1

3
5

0.
5

2.
5

0.
6

1.
4

400 1400

40
0

14
00

proline

Figure 21: Pair plots for the training set of wine dataset. Colors/symbols correspond
to the cultivar of each sample (the true known classification labels).

estimate the mixture leads to Bayesian versions of linear/quadratic/mixture
discriminant analysis.

To illustrate the use of mixture models for classification, we consider a
data set that is the result of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The analysis deter-
mined the quantities of 13 constituents found in each wine (see Figure 21).
Two files are provided, wine_training.txt and wine_test.txt, which con-
tain the training set (132 observations, 44 in the first class, 58 in the second
and 30 in the third) and the test set (46 observations, 15 in group 1, 13 in
group 2 and 18 in group 3), respectively.

We employ the variant of the EM algorithm for semi-supervised classifica-
tion discussed above and contrast the results against those produced by the
lda and qda functions in the R package MASS. The code is provided in the file
winesclas.R. In this case both our semi-supervised method and quadratic
discriminant analysis misclassify one observation in the test set, while linear
discriminant analysis performs perfectly

Label switching is not usually an issue in classification applications be-
cause the training set provides information that anchors the interpretation
of the labels we infer in the test set.

5P R A C T I C A L C O N S I D E R AT I O N S

5.1 ensuring numerical stability when computing class prob-
abilities

All the algorithms we have discussed to fit mixture models require that we
compute probability weights of the form

zk∑K
l=1 zl

where zk = ωkgk(x | θk) is a positive number for every k. When comput-
ing these weights, much care needs to be exercised to avoid computational
issues arising from finite machine precision. In particular, if calculations are
not done carefully, you might end up trying to compute 0/0!

Let’s employ a simple example to illustrate the point. Consider a mixture
of two Gaussian distributions with weights ω1 = ω2 = 1/2, means µ1 = 0

and µ2 = 1, and common variance σ = 1, and assume that you observe a
value x1 = 50. Let’s use the R function dnorm to evaluate the terms z1 =
1√
2π

exp
{
−50

2

2

}
and z2 = 1√

2π
exp
{
−49

2

2

}
that would be required to, for

example, compute the weight v1,1 and v1,2.

dnorm(50, 0, 1)

[1] 0

dnorm(50, 1, 1)

[1] 0

dnorm(50, 0, 1)/(dnorm(50, 0, 1) + dnorm(50, 1, 1))

[1] NaN

Note that R reports both values being equal to zero, and if we attempt
to compute the normalized weight, we get NaN as the response (recall that
this is R’s way of telling you that you are trying to carry out an undefined
operation). The reason for this apparent nonsense is that the result of expo-
nentiating a negative number with even a moderately large absolute value is
smaller than the smallest number that the computer can represent using its
finite precision. In other words, the numbers are so small that the computer
cannot tell them apart from zero!

The simplest way to address this numerical issue is to work in the loga-
rithmic scale. In particular, note that

zk∑K
l=1 zl

=
exp {log zk}∑K
l=1 exp {log zl}

(exp and log are inverse
functions)

=
exp {−b} exp {log zk}

exp {−b}
∑K
l=1 exp {log zl}

(multiply and divide by
the same quantity, e−b)

=
exp {log zk − b}∑K
l=1 exp {log zl − b}

(11)

43

44 practical considerations

for any number b. In words, if we add any constant to the logarithms of
the unnormalized weights, the value of the normalized weights remain un-
changed.

To empirically verify the identity above let’s go back to our motivating
example involving a mixture of two normals, but let assume that the obser-
vation is x2 = 3:

Direct calculation

z1 = dnorm(3, 0, 1)

z2 = dnorm(3, 1, 1)

z1/(z1+z2)

[1] 0.07585818

Compute in the logarithm scale, add b

to all values, and then exponentiate before standardizing

lz1 = dnorm(3, 0, 1, log=3)

lz2 = dnorm(3, 1, 1, log=3)

b = 3

exp(lz1+b)/(exp(lz1+b) + exp(lz2+b))

[1] 0.07585818

Although (11) is valid for any b, it should be clear that some values will
work better than others for the purpose of avoiding a 0/0 calculation. In
particular, we are interested in choosing a value b that makes at least one of
the terms in the denominator different from zero after exponentiation. One
such choice is b = maxl=1,...,K log zl:

K∑
l=1

exp
{

log zl − max
l=1,...,K

log zl

}
=

1+
∑
l:l 6=l∗

exp
{

log zl − max
l=1,...,K

log zl

}

where l∗ = arg maxl=1,...,K{log zl} is the index corresponding to the largest
value of log zl. One key advantage of this choice is that all the terms in
the sum are less or equal than one, which ensures that we do not overflow
when computing exp

{
log zl − maxl=1,...,K log zl

}
. Returning to our origi-

nal example with x1 = 50:

Compute in the logarithm scale,

add b to all values, and then exponentiate

lz1 = dnorm(50, 0, 1, log=TRUE)

lz2 = dnorm(50, 1, 1, log=TRUE)

b = max(lz1, lz2)

exp(lz1-b)/(exp(lz1-b) + exp(lz2-b))

[1] 3.179971e-22

Note that, for this trick to work, it must be implemented carefully and
operations need to be carried out directly in the logarithm scale. If the eval-
uation of kernel involves any exponentiation, we want to avoid carrying out
that exponentiation in the first place!

5.2 numerical consequences of multimodality 45

Wrong

lz1 = log(dnorm(50, 0, 1))

lz2 = log(dnorm(50, 1, 1))

b = max(lz1, lz2)

exp(lz1-b)/(exp(lz1-b) + exp(lz2-b))

[1] NaN

Wrong

lz1 = log(exp(-0.5*50^2)/sqrt(2*pi))

lz2 = log(exp(-0.5*49^2)/sqrt(2*pi))

b = max(lz1, lz2)

exp(lz1-b)/(exp(lz1-b) + exp(lz2-b))

[1] NaN

Right

lz1 = dnorm(50, 0, 1, log=TRUE)

lz2 = dnorm(50, 1, 1, log=TRUE)

b = max(lz1, lz2)

exp(lz1-b)/(exp(lz1-b) + exp(lz2-b))

[1] 3.179971e-22

Also right (just more cumbersome)

lz1 = -0.5*log(2*pi) - 0.5*50^2

lz2 = -0.5*log(2*pi) - 0.5*49^2

b = max(lz1, lz2)

exp(lz1-b)/(exp(lz1-b) + exp(lz2-b))

[1] 3.179971e-22

5.2 numerical consequences of multimodality

One challenge involved in working with mixture models is their likelihoods
tend to be highly multimodal. The effect of this multimodality is often rel-
atively mild in low-dimensional settings in which the components of the
mixture are well separated, but can become quite severe when there is sub-
stantial overlap among the components or the dimensionality of the obser-
vations is high.

To illustrate the multimodality of the likelihood function, recall our clus-
tering example from Section 4.2. In that example we fitted a location and
scale mixture of three multivariate Gaussian distributions to Fisher’s iris

data set. As you might recall, when implementing that example we ran our
algorithm multiple times using different (randomly generated) starting lo-
cations for the cluster centers, and reported the results based on the best
solution. We did this because the EM algorithm is only guaranteed to con-
verge to a local mode.

How bad are the other solutions? Figure 22 shows a boxplot of the value
of the Q function at convergence for all 15 initial values, while Figures 23

and 24 show the partition structure for the data associated with the best and
worst solutions, respectively. (Note that Figure 23 is identical to Figure 19).
From the boxplot it is clear that the value of the Q function can vary wildly
depending on the starting value of the algorithm. Given that the steps of

46 practical considerations

−400

−350

−300

−250

−200

Iterations

Q

Figure 22: Boxplot of the value of the Q function at convergence for 15 runs of the
EM algorithm for a location and scale mixture of multivariate Gaussian
distributions for the iris data set.

5.2 numerical consequences of multimodality 47

Sepal.Length

4.5 5.5 6.5 7.5

2.
0

3.
0

4.
0

2

2
22

2
2

2 2

2
2

2
2

22

2

2

2

2
22

2
22
22

2

222
22

2

2 2

22
22

2

22

2

2
2
2

2

2

2

2

2 33 3

3

33

3

3

3
3

3

3

3

33
33

3

1
3

1

3
1

3 33
3
13

3
33

31
3

3
3

3

3

33

3

3
3

3
33 3

3
3

1

1
111 1

1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1 11

1 1

1
1

1
1
1

1

11
1

1

1
11 111

1

11
1

1

1

1

1

4.5 5.5 6.5 7.5

1
2

3
4

5
6

7

2222 2 22 22 2 2222 2222 22 22
2

22222222 22 222 222 2222 222 22 22

33
3

3
33 3

3

3
3

3
33
3

3
33

3
1

3
1
3
13
33

313

333 3

1
3 3 3333
3 3

3
3

333 3

3

3

1
1

111
1

1

1
1 1

11
1

11 11

11

1
1

1

1

1
1 1

11
1 11 1
1
1

1
1

11
1

11
11
11
11111

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

2222 2
22 22 2 2222 2

222 22 2
2

2
2

22
2
2222
2

2 222 222 2222

2
22 22 22

33 3
3

3
3

3

3
33

3

3

3

33 33

3

1

3

1

3
1

3 333
1

3

333
3

13 3 3
3333

3
3

3
333 3

3
3

1

1
1

1

1 1

1 11

1

11
11

1 1

1

11

1

1
1 1

1
1

111
1

1
1 1

1

11

11

11
1

11

1

1
1
1

11
1

1

2.0 3.0 4.0

4.
5

5.
5

6.
5

7.
5

22 22
2

2

2
2

2
2

2

22
2

2 2
2

2

2

2
2

2
2

2
22 222

22

2 2
2

22
2

2
2

22
2 2

2 2
2

2
2

2
2

3

3
3

3

3

3

3

3

3

33

33 3
3

3

33
1

3
131 3

33
3 1

3
333
31

3

3

3
3

333

3
3

3

3 33
3

3

3

1
1

1

11

1

1

1

1
1

11
1

1 1

11

11

1

1

1

1

1
1

1

1 1
1

11
1

111

1

11
1

111

1

111
1 1

1
1 Sepal.Width

2.0 3.0 4.0

1
2

3
4

5
6

7

22 22 2 2222 2 2222 2 222 222 2
2

222 22222 2 2222 222 222 2 2 2
2 22 22

33
3

3
33 3

3

3
3

3
33

3

3
333

1
3

1
3

1 3
33

3 1
3

333 3

1
3 333 33

3 3
3

3
3 333

3

3

1
1

111
1

1

1
1 1

11 1
1 1 11

11

1
1

1

1

1
11

1 1
1 11 1
1
1

1
1

11
1
1111
11

11 1 11

2.0 3.0 4.0

0.
5

1.
5

2.
5

22 22 2
2222 2 2222 2

222 222
2

2
2
22
2
2222

2
2222 222 222 2

2
22 22 22

3333
3
3

3

3
33

3

3

3

33 33

3

1

3

1

3
1

33
33
1

3

333
3

1 3 33
3 333

3
3

3
3 3333
3

1

1
1

1

11

1 11

1

11
11

1 1

1

11

1

1
11

1
1

11 1
1

1
1 1
1

11

1 1

11
1
11

1

1
1

1

1 1
1

1

1 2 3 4 5 6 7

4.
5

5.
5

6.
5

7.
5

2222
2
2

2
2

2
2
2

22
2

22
2
2

2

2
2

2
2

2
22222

22

22
2

22
2

2
2

22
22

22
2
2

2

2
2

3

3
3

3

3

3

3

3

3

33

33 3
3

3

33
1

3
13 13

33
31

3
333

3 1

3

3

3
3

333

3
3

3

333
3

3

3

1
1

1

11

1

1

1

1
1

11
1

11

11

11

1

1

1

1

1
1
1

11
1

11
1

11 1

1

11
1

111

1

111
111
1

1 2 3 4 5 6 7

2.
0

3.
0

4.
0

2

2
22

2
2

22

2
2

2
2

22

2

2

2

2
22

2
22
22

2

222
22
2

22

22
22

2

22

2

2
2
2

2

2

2

2

2 333

3

33

3

3

3
3

3

3

3

33
33

3

1
3

1

3
1

3333
13

3
33
3 1

3

3
3

3

3

33

3

3
3

3
333

3
3

1

1
111 1

1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1 11

11

1
1

1
1
1

1

11
1

1

1
11 111

1

11
1

1

1

1

1
Petal.Length

1 2 3 4 5 6 7

0.
5

1.
5

2.
5

22222
2222222222

222222
2

2
2
22

2
2222
2
22222222

222

2
222222

333
3

3
3
3

3
33

3

3

3

33 33

3

1

3

1

3
1

3333
1

3

333
3

1333
3333
3

3
3

33333
3

1

1
1

1

1 1

1 11

1

11
11

11

1

11

1

1
1 1
1

1
111

1

1
11

1

1 1

11

11
1
11

1

1
1

1

11
1

1

0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

2222
2

2

2
2

2
2
2

22
2

2 2
2

2

2

2
2

2
2

2
22 222
22

22
2

22
2

2
2

22
22

22
2

2
2

2
2

3

3
3

3

3

3

3

3

3

33

33 3
3

3

33
1

3
13 13

33
3 1

3
333

3 1

3

3

3
3

333

3
3

3

333
3

3

3

1
1

1

1 1

1

1

1

1
1

11
1

1 1

11

11

1

1

1

1

1
1

1

11
1

1 1
1

111

1

11
1

1 11

1

1 11
11 1

1

0.5 1.5 2.5

2.
0

3.
0

4.
0

2

2
22

2
2

22

2
2

2
2

22

2

2

2

2
22

2
22
22

2

222
22

2

22

22
22

2

22

2

2
2

2

2

2

2

2

2 333

3

33

3

3

3
3

3

3

3

33
33

3

1
3

1

3
1

33
3
3

13
3
33
3 1

3

3
3

3

3

33

3

3
3

3
333

3
3

1

1
11 11

1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

111

11

1
1

1
1

1

1

11
1

1

1
11 1 11

1

1 1
1

1

1

1

1

0.5 1.5 2.5

1
2

3
4

5
6

7

22222
2222222222
222

222 2
2

222 22222 222222222222
22

22222

33
3

3
33 3

3

3
3

3
33

3

3
333
1

3
1

3
13

33
3 1
3

333
3

1
333333

3 3
3

3
3333

3

3

1
1

11 1
1

1

1
1 1

11
1

1 11
1

11

1
1

1

1

1
11

11
11 11
1

1
1

1
11

1
1 1

11
1 1
111
11

Petal.Width

Figure 23: Best result (out of 15 runs) for the clustering procedure for the iris data
set based on a location and scale mixture of multivariate Gaussian distri-
butions fitted using the EM algorithm. Numbers correspond to the infered
cluster labels, ĉ1, . . . , ĉn.

48 practical considerations

Sepal.Length

4.5 5.5 6.5 7.5

2.
0

3.
0

4.
0

3

3
33

3
3

3 3

3
3

3
3

33

3

3

3

3
33

3
33
33

3

333
33

3

3 3

33
33

3

33

3

3
3
3

3

3

3

3

3 32 3

2

22

2

2

3
2

2

2

2

22
32

2

2
2

2

2
2

2 33
3
22

3
22

22
2

2
3

3

2

22

2

2
2

2
22 3

2
2

1

2
222 3

2

3

3

2

2

2
2

2
1

2
2

1

3

3

2

2 32

2 3

2
2

2
3
3

1

22
2

2

1
22 222

2

22
2

2

2

2

2

4.5 5.5 6.5 7.5

1
2

3
4

5
6

7

3333 3 33 33 3 3333 3333 33 33
3

33333333 33 333 333 3333 333 33 33

32
3

2
22 2

2

3
2

2
22
2

2
32

2
2

2
2
2
22
33

322

322 2

2
2 2 3322
2 2

2
2

222 3

2

2

1
2

222
3

2

3
3 2

22
2

21 22

13

3
2

2

3

2
2 3

22
2 33 1
2
2

2
2

12
2

22
22
22
22222

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

3333 3
33 33 3 3333 3

333 33 3
3

3
3

33
3
3333
3

3 333 333 3333

3
33 33 33

32 3
2

2
2

2

2
32

2

2

2

22 32

2

2

2

2

2
2

2 333
2

2

322
2

22 2 3
3222

2
2

2
222 3

2
2

1

2
2

2

2 3

2 33

2

22
22

1 2

2

13

3

2
2 3

2
2

322
2

3
3 1

2

22

21

22
2

22

2

2
2
2

22
2

2

2.0 3.0 4.0

4.
5

5.
5

6.
5

7.
5

33 33
3

3

3
3

3
3

3

33
3

3 3
3

3

3

3
3

3
3

3
33 333

33

3 3
3

33
3

3
3

33
3 3

3 3
3

3
3

3
3

3

2
3

2

2

2

2

2

3

22

22 2
2

3

22
2

2
222 2

33
3 2

2
322
22

2

2

3
3

222

2
2

2

2 22
3

2

2

1
2

2

22

3

2

3

3
2

22
2

2 1

22

13

3

2

2

3

2
2

3

2 2
2

33
1

222

2

12
2

222

2

222
2 2

2
2 Sepal.Width

2.0 3.0 4.0

1
2

3
4

5
6

7

33 33 3 3333 3 3333 3 333 333 3
3

333 33333 3 3333 333 333 3 3 3
3 33 33

32
3

2
22 2

2

3
2

2
22

2

2
322

2
2

2
2

2 2
33

3 2
2

322 2

2
2 233 22

2 2
2

2
2 223

2

2

1
2

222
3

2

3
3 2

22 2
2 1 22

13

3
2

2

3

2
23

2 2
2 33 1
2
2

2
2

12
2
2222
22

22 2 22

2.0 3.0 4.0

0.
5

1.
5

2.
5

33 33 3
3333 3 3333 3

333 333
3

3
3
33
3
3333

3
3333 333 333 3

3
33 33 33

3232
2
2

2

2
32

2

2

2

22 32

2

2

2

2

2
2

23
33
2

2

322
2

2 2 23
3 222

2
2

2
2 2232
2

1

2
2

2

23

2 33

2

22
22

1 2

2

13

3

2
23

2
2

32 2
2

3
3 1
2

22

2 1

22
2
22

2

2
2

2

2 2
2

2

1 2 3 4 5 6 7

4.
5

5.
5

6.
5

7.
5

3333
3
3

3
3

3
3
3

33
3

33
3
3

3

3
3

3
3

3
33333

33

33
3

33
3

3
3

33
33

33
3
3

3

3
3

3

2
3

2

2

2

2

2

3

22

22 2
2

3

22
2

2
22 22

33
32

2
322

2 2

2

2

3
3

222

2
2

2

222
3

2

2

1
2

2

22

3

2

3

3
2

22
2

21

22

13

3

2

2

3

2
2
3

22
2

33
1

22 2

2

12
2

222

2

222
222
2

1 2 3 4 5 6 7

2.
0

3.
0

4.
0

3

3
33

3
3

33

3
3

3
3

33

3

3

3

3
33

3
33
33

3

333
33
3

33

33
33

3

33

3

3
3
3

3

3

3

3

3 323

2

22

2

2

3
2

2

2

2

22
32

2

2
2

2

2
2

2333
22

3
22
2 2

2

2
3

3

2

22

2

2
2

2
223

2
2

1

2
222 3

2

3

3

2

2

2
2

2
1

2
2

1

3

3

2

2 32

23

2
2

2
3
3

1

22
2

2

1
22 222

2

22
2

2

2

2

2
Petal.Length

1 2 3 4 5 6 7

0.
5

1.
5

2.
5

33333
3333333333

333333
3

3
3
33

3
3333
3
33333333

333

3
333333

323
2

2
2
2

2
32

2

2

2

22 32

2

2

2

2

2
2

2333
2

2

322
2

2223
3222
2

2
2

22232
2

1

2
2

2

2 3

2 33

2

22
22

12

2

13

3

2
2 3
2

2
322

2

3
31

2

2 2

21

22
2
22

2

2
2

2

22
2

2

0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

3333
3

3

3
3

3
3
3

33
3

3 3
3

3

3

3
3

3
3

3
33 333
33

33
3

33
3

3
3

33
33

33
3

3
3

3
3

3

2
3

2

2

2

2

2

3

22

22 2
2

3

22
2

2
22 22

33
3 2

2
322

2 2

2

2

3
3

222

2
2

2

222
3

2

2

1
2

2

2 2

3

2

3

3
2

22
2

2 1

22

13

3

2

2

3

2
2

3

22
2

3 3
1

222

2

12
2

2 22

2

2 22
22 2

2

0.5 1.5 2.5

2.
0

3.
0

4.
0

3

3
33

3
3

33

3
3

3
3

33

3

3

3

3
33

3
33
33

3

333
33

3

33

33
33

3

33

3

3
3

3

3

3

3

3

3 323

2

22

2

2

3
2

2

2

2

22
32

2

2
2

2

2
2

23
3
3

22
3
22
2 2

2

2
3

3

2

22

2

2
2

2
223

2
2

1

2
22 23

2

3

3

2

2

2
2

2
1

2
2

1

3

3

2

232

23

2
2

2
3

3

1

22
2

2

1
22 2 22

2

2 2
2

2

2

2

2

0.5 1.5 2.5

1
2

3
4

5
6

7

33333
3333333333
333

333 3
3

333 33333 333333333333
33

33333

32
3

2
22 2

2

3
2

2
22

2

2
322
2

2
2

2
22

33
3 2
2

322
2

2
223322

2 2
2

2
2223

2

2

1
2

22 2
3

2

3
3 2

22
2

2 12
2

13

3
2

2

3

2
23

22
23 31
2

2
2

2
12

2
2 2

22
2 2
222
22

Petal.Width

Figure 24: Worst result (out of 15 runs) for the clustering procedure for the iris

data set based on a location and scale mixture of multivariate Gaussian
distributions fitted using the EM algorithm. Numbers correspond to the
infered cluster labels, ĉ1, . . . , ĉn.

5.2 numerical consequences of multimodality 49

the EM algorithm always improve on the value of Q, this is clear evidence
of multimodality. Furthermore, note that the quality of the worst solution
is really low. Indeed, recall that Setosa flowers have features that are quite
different from the other two species and therefore a reasonable solution
should clearly allocate them to a cluster of their own. Against this intuition,
the worst solution creates at least one cluster that includes observation from
all three species.

Multimodality is not an exclusive problem of EM algorithm. As you might
have guessed, the k-means clustering algorithm suffers from identical issues.
Multimodality is also a problem when working with Markov chain Monte
Carlo algorithms for finite mixture models, although the issues tend to be
less severe than with the EM algorithm. Indeed, MCMC algorithms are the-
oretically guaranteed to converge if run for long enough (and, therefore, to
jump across modes according to their relative importance). Nonetheless, in
practice it might take an impractically large number of iterations to do so.
This means that the MCMC algorithm might get “stuck” exploring the pos-
terior distribution around a local mode for long periods of time and appear
to converge, but fail to discover the global one. Therefore, it is good practice
to also perform multiple runs of your MCMC algorithm when carrying out
a Bayesian analysis for mixture models. If different runs appear to cover-
age to qualitatively different solutions then only the samples from the chain
with the largest unnormalized log posterior should be used for inference.

Another issue that might arise when implementing the EM algorithm
that is related to multimodality (and to the lack of identifiability of mixture
models) is that some of the modes of the likelihood function might involve
partitions that utilize only a subset of the K components in the mixture (i.e.,
modes for which there is at least one index k such that vi,k ≈ 0 for all
i = 1, . . . ,n). This is an issue because the partial MLEs θ(t)1 , . . . , θ(t)K do not
exist in that case.

As before, we illustrate this issue in the context of clustering the observa-
tions in the iris data set. Rather than using a random initial point for the
algorithm, we initialize it in such a way that the first component completely
covers the support of the observed data, while the other two fall completely
outside it (see Figure 25 and the code contained in clusteringiris_broken.R).
If you attempt to execute the EM algorithm you will get an error of the form:

Error in if (abs(QQn - QQ)/abs(QQn) < epsilon) {: missing value

where TRUE/FALSE needed

This error arises because the evaluation of the Q function at the end of the
iteration resulted in a NaN value, leading to an undefined logical operation
when carrying out the convergence check.

QQn

[1] NaN

if(abs(QQn-QQ)/abs(QQn)<epsilon){

sw=TRUE

}

Error in if (abs(QQn - QQ)/abs(QQn) < epsilon) {: missing value

where TRUE/FALSE needed

50 practical considerations

Sepal.Length

4 5 6 7 8

1
2

3
4

5

1

1
11

1
1

1 1

1
1

1
1
11

1
1

1
1

11
1

11
11

1
111

11
1

1 1

11
11

1
11

1

1
1
1

1

1

1

1
1 22 2

2

22

2

2

2
2

2

2

2

22
22

2

2
2

2
2

2
2 22

2
22

2
22

22
2

2
2

2

2

22
2

2
2

2
22 2

2
2

3

3
333 3

3
3

3

3
3

3
3

3
3

3
3

3

3
3

3
3 33

3 3
3

3
3

3
3

3

33
3

3
3
33 333

3

33
3

3

3
3

3

4 5 6 7 8

1
2

3
4

5
6

7

1111 1
1

1 11 1 111
1 1

111
11 11

1

11
111111 11 11
1 111 1111
1
1

1 11 11

22
2

2
22 2

2

2

2
2

22

2

2

22
2

2
2

2

2

22
22

22
2

2
22 2

2
2 2 2

2
22

2 2
2

2

222 2

2

2

3

3

3
33

3

3

3
3

3

33
3

33
33

33

3

3

3

3

3

3
3

33

3 3
3

3

3
3

3
3

33

3
33
33

33
3333

3

4 5 6 7 8

−
1

0
1

2
3

1111 1
11 11 1 1111 1

111 11 1
1

1
1

11
1

1111
1

1 111 111 1111
1
11 11 11

22 2
2

2
2

2

2
22

2

2

2
22 22

2

2
2

2

2
2

2 222
2

2

222
2

22 2 2
2222

2
2

2
222 2

2
2

3

3
3

3
3 3

3 33

3

33
33

3 3

3
33

3

3
3 3

3
3

333
3

3
3 3

3

33

33

33
3

33
3

3
3
3

33
3

3

1 2 3 4 5

4
5

6
7

8

1
1

11
1

1

1
1

1

1

1

11

1

1 1
1

1

1

1
1

1

1

1
1

1 1
11

11

1
1
1

11

1

1

1

11

1 1

1 1
1

1

1

1
1

2

2

2

2

2

2

2

2

2

2
2

22 2

2

2

2
2

2

2
2

2
2

2
2
2

22

2
2

22
2
2

2

2

2
2

222

2
2

2

2 22

2

2

2

3

3

3

3
3

3

3

3

3

3

33
3

3 3

33

33

3

3

3

3

3
3

3

33
3

3
3

3

33
3

3

33
3

3
3
3

3

333
3

3
3

3 Sepal.Width

1 2 3 4 5

1
2

3
4

5
6

7
1111 1

1
1111 111

1 1
111

111 1
1

111 11111 1 111
1 111 111 1

1
1

1 11 11

22
2

2
22 2

2

2

2
2

22

2

2

22
2

2
2

2

2

2 2
22

22
2

2
22 2

2
2 22

2
22

2 2
2

2

2 222

2

2

3

3

3
33

3

3

3
3

3

33 3
3 3 33

33

3

3

3

3

3

3
3

33

33
3

3

3
3

3
3

33

3
33
33

33
33 3 3
3

1 2 3 4 5

−
1

0
1

2
3

1111 1
11111 1111 1

111 111
1

1
1
11
1
1111

1
1111 111 111 1

1
11 11 11

2222
2
2

2

2
22

2

2

2
2222

2

2
2

2

2
2

22
22
2

2

222
2
2 2 22

2 222
2

2
2

2 2222
2

3

3
3

3
33

3 33

3

33
33

3 3

3
33

3

3
33

3
3

333
3

3
3 3
3

33

3 3

33
3
33

3
3
3

3
3 3

3

3

1 2 3 4 5 6 7

4
5

6
7

8

1
1
11
1

1

1
1

1

1

1

11

1

11
1
1

1

1
1

1

1

1
1

11
11

11

1
1
1

11

1

1

1

11

11

11
1
1

1

1
1

2

2

2

2

2

2

2

2

2

2
2

22 2

2

2

2
2

2

2
2

2
2

2
2
2

22

2
2

22
2

2

2

2

2
2

22 2

2
2

2

222

2

2

2

3

3

3

3
3

3

3

3

3

3

33
3

33

33

33

3

3

3

3

3
3

3

33
3

3
3

3

33
3

3

33
3

3
3

3

3

333
3
3
3

3

1 2 3 4 5 6 7

1
2

3
4

5

1

1
11

1
1

11

1
1

1
1

11

1
1

1
1

11
1

11
11
1
111
11
1

11

11
11

1
11

1

1
1

1

1

1

1

1
1 22 2

2

22

2

2

2
2

2

2

2

22
22

2

2
2

2
2

2
222 2

22
2

22
2 2

2
2
2

2

2

2 2
2

2
2

2
222

2
2

3

3
333 3

3
3

3

3
3

3
3

3
3
3
3

3

3
3

3
3 33

33
3
3

3
3

3

3

33
3

3
3
33 333

3

33
3

3

3
3

3 Petal.Length

1 2 3 4 5 6 7

−
1

0
1

2
3

11111
1111111111

111111
1

1
1
11

1
1111
1
11111111111
1

111111

22 2
2

2
2
2

2
22

2

2

2
22 22

2

2
2

2

2
2

222 2
2

2

222
2

2222
222 2
2

2
2

22222
2

3

3
3

3
3 3

3 33

3

33
33

33

3
33

3

3
3 3
3

3
333

3

3
33

3

3 3

33

33
3
33

3
3

3
3

33
3

3

−1 0 1 2 3

4
5

6
7

8

1
1
11
1

1

1
1

1

1

1

11

1

11
1

1

1

1
1

1

1

1
1
11
11

11

1
1
1

11

1

1

1

11

11

11
1

1

1

1
1

2

2

2

2

2

2

2

2

2

2
2

22 2

2

2

2
2

2

2
2

2
2

2
2
2
2 2

2
2
22
2

2

2

2

2
2

222

2
2

2

222

2

2

2

3

3

3

3
3

3

3

3

3

3

33
3

3 3

33

33

3

3

3

3

3
3

3

33
3

3
3

3

33
3

3

33
3

3
3

3

3

333
3
3

3
3

−1 0 1 2 3

1
2

3
4

5

1

1
11

1
1

11

1
1

1
1

11

1
1

1
1
11

1
11
11

1
111

11
1

11

11
11

1
11

1

1
1

1

1

1

1

1
1 222

2

22

2

2

2
2

2

2

2

22
22

2

2
2

2
2

2
22

2
2

22
2
22
2 2

2
2

2

2

2

22
2

2
2

2
222

2
2

3

3
33 33

3
3
3

3
3

3
3

3
3

3
3

3

3
3

3
333

33
3
3

3
3

3

3

33
3

3
3

33 3 33
3

33
3

3

3
3

3

−1 0 1 2 3

1
2

3
4

5
6

7

11111
1

1111111
11

111
1111

1

11
11111111111111
1111

1
1

11111

22
2

2
22 2

2

2

2
2

22

2

2

22
2

2
2

2

2

22
22
2 2
2

2
222

2
2222

22
22
2

2

2222

2

2

3

3

3
3 3

3

3

3
3

3

33
3

3 33
3

33

3

3

3

3

3

3
3

33

33
3
3

3
3

3
3
33

3
3 3

33

33
333
3

3

Petal.Width

Figure 25: An initial state for the EM algorithm in the iris dataset that fails to lead
to convergence because it leads to two components.

5.3 selecting the number components : bic 51

Unlike the previously discussed numerical issues (multimodality and ap-
proximation errors due to finite computer precision), this is a fundamental
problem with maximum likelihood estimation rather than an implementa-
tion issue. Empty components are fine in the context of Bayesian inference
as long as proper priors are used (as recommended in Chapter 3). In prac-
tice, any solution of the EM algorithm that seems to converge to a mode of
this type should be discarded outright, and the algorithm restarted with a
new initial value. Fortunately, this is not an extremely common situation.

5.3 selecting the number components : bic

Selecting the right number of components in a mixture is a critical and
difficult task, particularly for clustering and density estimation tasks. In
fact, determining the number of cluster in the mixture is often an important
scientific question of its own. For example, in the iris data set, the number
of clusters in the sample corresponds to the number of distinct plant species
in the sample, and discriminating between K = 2 and K = 3 allows us
to determine whether Iris versicolor and Iris virginica are indeed different
species.

One of the most common approaches to model selection that is useful for
mixture models is the Bayesian Information Criteria (BIC). Given a collection
of J models to be compared, the BIC for model j is given by the formula

BICj = −2 logLj(η̂j) + rj log(n), (12)

where Lj corresponds to the likelihood of model j, η̂j is the maximum like-
lihood estimator for its parameters, rj is the number of free parameters
associated with model j, and n in the number of observations in the sample.
The optimal model is the one with the lowest BIC.

You can interpret the first term in (12) as measuring goodness of fit: lower
values for −2 logLj(η̂j) implies that model j fits the data better. On the other
hand, the second term is a complexity penalty: the more parameters in the
model, the higher the penalty. Hence, BIC explicitly trades off goodness of
fit with complexity.

In the case of mixture models, j corresponds to K (the number of com-
ponents in the mixture), ηK = (ω1, . . . ,ωK, θ1, . . . , θK), and the likelihood
takes the form

LK(ω1, . . . ,ωK, θ1, . . . , θK) =
n∏
i=1

K∑
k=1

ωkgk(xi | θk)

(as discussed in Section 1.4). On the other hand, since we only have K− 1

independent weights, the number of parameters is given by

rK = (K− 1) +

K∑
k=1

dim θk,

where the number of parameters associated with the kernel,
∑K
k=1 dim θk,

depends on the specific choice of kernel. For example, in the case of location
mixtures of q-variate normal distributions we have

K∑
k=1

dim θk = Kq+
q(q+ 1)

2

52 practical considerations

(there are K mean vectors of dimension q, and a single variance-covariance
matrix with of dimension q×q, which has q(q+ 1)/2 free parameters). Sim-
ilarly, for location and scale mixture of q-variate normal distributions with
completely free covariance matrices for each dimension we have

K∑
k=1

dim θk = K

(
q+

q(q+ 1)

2

)
To illustrate the performance of BIC in model selection consider again the

galaxies data set we discussed in Section 4.1. We previously used a loca-
tion mixture of 6 univariate Gaussian distributions to estimate the density
associated with the velocity of the galaxies. The choice of 6 components was
based on the fact that the observations were collected from 6 well-separated
conic sections. Here we use BIC to determine whether six in indeed the op-
timal number of components for this problem, as well as to illustrate some
of the identifiability issues we had originally introduced in Section 1.5.

We fit location mixtures of Gaussian distributions between K = 2 and
K = 20 components using the EM algorithm. The code is available in the file
galaxies_BIC.R. Figure 26 presents the value of the BIC as a function of K.
Note that K = 6 is indeed the optimal choice for the number of component.
BIC is relatively high for lower values of K (where the model does not pro-
vide a good fit to the data) as well as for higher values of K (where there is
a good fit but also a large number of parameters).

To provide some intuition on these results we compare in Figure 27 the
kernel density estimate for K = 6 (the optimal value) against those for K = 4

and K = 5, while in Figure 28 we compare the estimate for K = 6 against
those for K = 7 and K = 8. From Figure 27 we see that the estimates change
substantially when we go from K = 4 to K = 6. The biggest change can
be seen in the estimate of the central area of the distribution: for K = 4

this area is estimated as clearly unimodal, while for K = 5 and K = 6 it
becomes multimodal. On the other hand, from Figure 28 we see that the
estimate does not change much when we add additional components over
6. In particular, the density estimator for K = 7 is identical to that for K = 6.
In fact, the estimate we obtain K = 7 just splits one component into two that
have about the same mean but different weights that add up to the original.

The above results agrees with our intuition about the behavior of BIC.
Adding a six component to the model allows for a substantially better fit to
the data, and therefore BIC decreases is minimized at K = 6. On the other
hand, adding a seventh (or an eight!) component does not improve the fit
of the model enough to justify the additional complexity, and therefore the
BIC increases.

We can also use this example to demonstrate the trade offs between the
number of components in the mixture and the standard deviation (band-
width) of the kernels in density estimation (see Section 4.1). In Figure 29

we present the maximum likelihood estimate for the standard deviation σ
as a function of the number of components K. Note that, as our intuition
had suggested, the standard deviation tends to decrease as the number of
components in the mixture increases. Hence, as the number of components
increase they become more localized, and the density estimate becomes less
smooth.

5.3 selecting the number components : bic 53

5 10 15 20

15
80

16
00

16
20

16
40

16
60

K

B
IC

Figure 26: BIC as a function of the number of components K in a location mixture of
Gaussian distributions for the galaxies dataset.

54 practical considerations

5000 10000 20000 30000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

Velocity

D
en

si
ty

K = 6
K = 5
K = 4

Figure 27: Density estimates for the galaxies dataset based on location mixtures of
Gaussian distributions for K = 6 (optimal according to BIC), K = 5 and
K = 4.

5.3 selecting the number components : bic 55

5000 10000 20000 30000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

Velocity

D
en

si
ty

K = 6
K = 7
K = 8

Figure 28: Density estimates for the galaxies dataset based on location mixtures of
Gaussian distributions for K = 6 (optimal according to BIC), K = 7 and
K = 8. Note that the graphs for K = 6 and K = 7 overalp.

56 practical considerations

5 10 15 20

10
00

20
00

30
00

40
00

K

σ̂

Figure 29: Maximum likelihood estimate for the standard deviation σ as a function
of the number of components K in a location mixture of Gaussian distri-
butions for the galaxies dataset.

5.4 fully bayesian inference on the number of components 57

5.4 fully bayesian inference on the number of components

As we discussed in Section 1.5, a mixture model with K∗ components can
be represented as another mixture with K > K∗ components, with the addi-
tional K−K∗ components having zero weights,

f(x) =

K∗∑
k=1

ωkgk(x | θk) +

K∑
k=K∗+1

0gk(x | θk).

In a Bayesian context, this observation can be exploited to devise a mecha-
nism to perform inferences on the number of components in the model. This
is done by noting that K, the maximum number of components we are will-
ing to tolerate in the mixture (and which we might set to a relatively large
number), can potentially be different from the actual number of compo-
nents used by the data K∗ =

∑K
k=1 1(mk > 1) where mk =

∑n
i=1 1(ci = k)

is the number of observations in the sample coming from component k. In
practice, this translate into fitting mixtures with relatively large number of
components K and then using summaries of the posterior distribution over
the assignments c1, . . . , cn to determine the effective number of components
that are supported by the data.

For this strategy to be effective, however, care needs to be exercised in the
choice of a prior for the weights ω1, . . . ,ωK. Indeed a uniform prior on the
K-dimensional simplex (our default choice so far) is such that the expected
number of clusters K∗ grows without bounds as K increases. This is clearly
unappealing since the posterior distribution would then be substantially
affected by the choice of the upper bound K. Instead, it would be desirable
to select a prior on the weights that is independent of the choice K, or at least
one where the value of K∗ converges to a finite limit when K goes to infinity.
We can obtain such a prior by making the parameters of the Dirichlet prior
depend on K,

(ω1, . . . ,ωK) ∼ Dirichlet
(
1

K
, . . . ,

1

K

)
,

so that the prior probability of any single component decreases as the max-
imum number of components we allow increases. Under this prior, the a
priori expected value of K∗ is such that

lim
K→∞E (K∗) =

n∑
i=1

α

α+ i− 1
≈ α log

n+α− 1

α
. (13)

(The approximation exploits the fact that we can reinterpret the sum as a
Riemman approximation to the integral, i.e.,

∑n
i=1

α
α+i−1 ≈

∫n
1

1
x+α−1dx.)

Equation 13 can be used to complete the prior elicitation process. In par-
ticular, we start with the number of observations n in the sample and a
rough prior estimate of the number of clusters. We use these two values to
solve (13) for the corresponding value of α. Then we set K to be “large” (in
practice, values between 20 and 50 are usually enough). Finally, we run your
algorithm and study the posterior distribution of K∗. If that posterior distri-
bution puts substantial mass close to the maximum number of components
allowed, we increase K and run your algorithm again. Otherwise, we use
the resulting posterior samples for inference.

To illustrate our approach consider again the galaxies data set. In that
case n = 82 and our prior information suggests that we expect around 6

clusters in this data. Hence, the value of α should satisfy

6 = α log
82+α− 1

α
.

58 practical considerations

5 6 7 8 9 10 11 12 13 14 15

K*

F
re

qu
en

cy

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 30: Posterior distribution on the number of occupied components K∗ for the
galaxies dataset under a Dirichlet prior for weights with hyperparame-
ters a1 = · · · = aK = 1.5/K and K = 30.

This is a nonlinear equation, but it can be easily solve using R:

ff = function(alpha) alpha*log((82 + alpha - 1)/alpha) - 6

alph = uniroot(ff, c(0.01, 20))

alph$root

[1] 1.496393

Hence, we proceed first to fit a mixture model with a Dirichlet prior on
the weights ω1, . . . ,ωK with parameters a1 = a2 = . . . = aK = α/K with
α = 1.5 and K = 25 (see the file galaxies_bayesian.R). Figure 30 shows the
posterior distribution on the number of occupied components K∗ under this
model. Note that the Bayesian procedure suggests a mixture with between
8 and 10 components, with the posterior mode being 9. This is somewhat
larger than the six suggested by the scientists who collected the data and
the BIC procedure we discussed in Section 5.3.

The posterior distribution we just presented is unaffected by increases in
the maximum number of components K (test this yourself by running the
code on your own with, for example, K = 60). On the other hand, the pos-
terior distribution is affected by changes in the hyperparameter α, but only
modestly as long as the prior distribution remains reasonable. To illustrate
this, Figure 31 shows the posterior distribution for α = 2 (which, according

5.5 fully bayesian inference on the partition structure 59

4 5 6 7 8 9 10 11 12 13 14 15 16 17

K*

F
re

qu
en

cy

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 31: Posterior distribution on the number of occupied components K∗ for the
galaxies data set under a Dirichlet prior for weights with hyperparame-
ters a1 = · · · = aK = 2/K and K = 30.

to equation (13), implies E(K∗) ≈ 7.5 a priori). This posterior still favors
between 8 and 10 components and the mode is still at 9 components, but
10 components receives comparatively more weight under this alternative
prior. On the other hand, Figure 32 shows the posterior for α = 1 (which
corresponds to E(K∗) ≈ 4.4 a priori). In this case the posterior suggests
between 7 and 9 components, with the posterior mode being located at 8.

As a concluding remark, it should be reemphasized that this approach of
using a larger number of components in the mixture and letting the data
decide how many to use is feasible in a Bayesian context but not in a fre-
quentist one. Indeed, recall from Section 5.2 that the MLEs for mixtures with
empty components do not exist and lead to a number of numerical issues.
On the other hand, as long as you use proper priors for θ1, . . . , θK, empty
components are not an issue in a Bayesian context.

5.5 fully bayesian inference on the partition structure

The number of components in the mixture is one potentially interesting sum-
mary of the posterior distribution over partitions, but it is not the only one.
In this section we explore tools that can be used to provide more general
summaries, including uncertainty measures.

One particular challenge associated with summarizing the posterior dis-
tribution in the context of mixture models is the lack of identifiability of the
indicators c1, . . . , cn due to label switching. Hence, any summary measure
we employ must necessarily be invariant to permutations in the labels. One

60 practical considerations

4 5 6 7 8 9 10 11 12 13 14 15

K*

F
re

qu
en

cy

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 32: Posterior distribution on the number of occupied components K∗ for the
galaxies data set under a Dirichlet prior for weights with hyperparame-
ters a1 = · · · = aK = 1/K and K = 30.

5.5 fully bayesian inference on the partition structure 61

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

0.00

0.25

0.50

0.75

1.00

Figure 33: Heatmap of the pairwise co-clustering matrix for the galaxies dataset
under a Dirichlet prior for weights with hyperparameters a1 = · · · =
aK = 1.5/K and K = 30.

such metric that is quite useful is the n×n pairwise co-clustering matrix D
with entries

Di,j = Pr(ci = cj | data).

The value of Pr(ci = cj | data) can be easily approximated from the posterior
samples as the frequency by which observations i and j are allocated to the
same component.

To illustrate the construction and use of this summary, Figure 33 shows
the pairwise co-clustering matrix associated with the galaxies data set.
Note that, since observations are ordered in the sample according to their
value, groups of observations that are often clustered together in the poste-
rior samples form red squares in the graph. In particular, we can clearly see
three tight, well-separated clusters (two located at the bottom left corner of
the graph that include 7 and 2 observations, respectively, and one at the top
right corner that includes 3 observations). These three clusters correspond
to the modes at velocities around 10,000, 16,000 and 32,000 in the kernel den-
sity estimate from Figure 34. We also observe at least three additional red
blocks in the heatmap, although they are not as well defined. In particular,
the model is quite uncertain about the clustering structure associated with
observations 49 to 76. The model appears to provide support for various
alternative explanations of the data, from a single big cluster in this area, to
up to 3 smaller ones.

62 practical considerations

5000 10000 15000 20000 25000 30000 35000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

0.
00

02
5

0.
00

03
0

Velocity

D
en

si
ty

MCMC
KDE

Figure 34: Bayesian kernel density estimated for the galaxies dataset under a Dirich-
let prior for weights with hyperparameters a1 = · · · = aK = 1.5/K and
K = 30.

5.5 fully bayesian inference on the partition structure 63

It is important to reiterate that the pairwise incidence plot looks so ap-
pealing in this case because we are working with univariate observations
that have been sorted in increasing order. In more general settings (and, par-
ticularly, when working with multivariate observations for which there is
no natural ordering) the graph might be unreadable unless the data is re-
organized. One simple approach is to use any posterior sample and make
sure that observations that are clustered together in that sample appear in
adjacent positions in the heatmap.

The pairwise co-clustering matrix not only provides us with a visual tool
to quantify uncertainty in the clustering structure, but it can also be used
to generate point estimates of the partition structure of the data (and, as
a byproduct, an alternative point estimate for the number of clusters in the
sample). As is common in Bayesian approaches to deriving point estimators,
we start with a loss function, which in this case takes the form:

L(c, ĉ) =
n−1∑
i=1

n∑
j=i+1

γ11(ci = cj)1(ĉi 6= ĉj) + γ21(ci 6= cj)1(ĉi = ĉj).

This loss function includes two terms. The first terms counts the number
of pairs of observations that the estimator classifies as being in separate
clusters when in reality they belong together, and penalizes each of these
instances by a common factor γ1. Similarly, the second term counts the
number of pairs of observations that the estimators assigns to the same
cluster while in truth they belong to different ones, and penalizes it by a
constant γ2.

Since the true partition c is unknown, we compute the expected utility
with respect to the posterior distribution,

L∗(ĉ) = E
[n−1∑
i=1

n∑
j=i+1

γ11(ci = cj)1(ĉi 6= ĉj)

+ γ21(ci 6= cj)1(ĉi = ĉj)
]

=

n−1∑
i=1

n∑
j=i+1

γ1E
[
1(ci = cj)

] (
1− 1(ĉi = ĉj)

)
+ γ2

(
1− E

[
1(ci = cj)

])
1(ĉi = ĉj)

=

n−1∑
i=1

n∑
j=i+1

γ1 Pr(ci = cj | data) − γ1 Pr(ci = cj | data)1(ĉi = ĉj)

+ γ21(ĉi = ĉj) − γ2 Pr(ci = cj | data)1(ĉi = ĉj)

= γ1

n−1∑
i=1

n∑
j=i+1

Pr(ci = cj | data)+

(γ1 + γ2)

n−1∑
i=1

n∑
j=i+1

{
γ2

γ1 + γ2
− Pr(ci = cj | data)

}
1(ĉi = ĉj)

Now, note that the term γ1
∑n−1
i=1

∑n
j=i+1 Pr(ci = cj | data) in L∗(ĉ)

does not depend on the point estimator ĉ and can therefore be treated as a
constant for any given data set. Furthermore, the point at which a function
is maximized does not change if we add and/or multiply the the function
by positive constant, and multiplying a −1 just changes the minimization

64 practical considerations

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

0.00

0.25

0.50

0.75

1.00

Figure 35: Heatmap plot for the co-clustering matrix and optimal clustering under
D̄ = 0.5 for the galaxies dataset. Black lines identify the limits of each
cluster under the optimal partition.

problem into a maximization one (and viceversa). Hence, minimizing L∗(ĉ)
is equivalent to maximizing:

L∗∗(ĉ) =
n−1∑
i=1

n∑
j=i+1

{
Di,j −

γ2
γ1 + γ2

}
1(ĉi = ĉj). (14)

Since both γ1 and γ2 need to be non-negative, the ratio D̃ = γ2
γ1+γ2

lives
in the [0, 1] interval. D̃ acts as a threshold that, roughly speaking, controls
how often two data points need to be observed in the same cluster in the pos-
terior distribution before they are put together by the point estimator. Note
that setting D̄ = 1 (which corresponds to γ1 = 0) means that no penalty is
incurred if we wrongly split clusters. This choice leads to an optimal clus-
ter allocation in which each observation is its own cluster, no matter the
value of the matrix D. For analogous reasons, D̄ = 0 (which corresponds to
γ2 = 0) leads to a point estimate in which all observations are allocated to
a single cluster. Solutions for other values of D̄ need to be obtained numeri-
cally, typically using an iterative algorithm that reallocates one observation
at a time. This algorithm typically converges to a global maximum if the ini-
tial configuration corresponds to one of the configurations sampled by the
MCMC algorithm. A common choice of D̄ is D̄ = 1/2, which corresponds
to weighting both types of clustering errors equally.

5.5 fully bayesian inference on the partition structure 65

Code for computing and maximizing L∗∗ in the context of the galaxies

data set can be found at the end of the file galaxies_bayesian.R. Figure 35

presents the optimal clustering structure for D̄ = 1/2 superimposed on the
same heatmap from Figure 34. In this case, the optimal partition involves 9

clusters. Four of these correspond to relatively small but well-defined clus-
ters located at the two extremes of the velocity range. The approach also
identifies observations 10 to 45 as a single cluster. However, it breaks the
set that comprises observations 46 to 76 into 4 groups: a large one (obser-
vations 49 to 70), a medium-sized one (observations 71 to 76), and two tiny
ones (one comprising observations 47 and 48, and one comprising only ob-
servation 46).

A few parting comments on the use of point estimators generated by
optimizing (14) are in order. First, note that the optimal partition may or
may not correspond to one of the samples from the posterior distribution
generated by the MCMC algorithm. Secondly, larger values of D̄ tend to lead
to a smaller number of clusters. However, the structure of the optimization
problem is such that we can partition the unit interval into an exhaustive and
non-overlapping set of intervals [0, λ1), [λ1, λ2), . . . , [λN, 1] (typically with
N < n) such that the optimal partition is constant on each interval [λj, λj+1).
Moreover, there is usually some level of continuity in these partitions, in the
sense that partitions associated with adjacent intervals are identical except
for a small number of clusters, which get split/merged. This simplifies the
process of assessing the sensitivity of the solution to the choice of D̄. As an
illustration, Figures 36 and 37 show the optimal partitions for the galaxies

data set for K = 0.4 and K = 0.53, respectively. When comparing Figure
36 with 35 we note that the number of clusters in the optimal partition has
gone down from 9 to 8, due exclusively to observations 46 to 76 now being
partitioned into 3 clusters rather than 4. Similarly, when comparing Figure
37 with 35 we see that the optimal partition involves now 10 clusters, which
are obtained by reallocating the four old clusters comprising observations
46 to 76 into five clusters.

66 practical considerations

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

0.00

0.25

0.50

0.75

1.00

Figure 36: Heatmap plot for the co-clustering matrix and optimal clustering under
D̄ = 0.4 for the galaxies data set. Black lines identify the limits of each
cluster under the optimal partition.

5.5 fully bayesian inference on the partition structure 67

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

0.00

0.25

0.50

0.75

1.00

Figure 37: Heatmap plot for the co-clustering matrix and optimal clustering under
D̄ = 0.53 for the galaxies data set. Black lines identify the limits of each
cluster under the optimal partition.

