Common applications of Bayesian hierarchical models

The usefulness of hierarchical modeling goes beyond the obvious application to hierar-
chically grouped data. In fact, with exception of the basic statistical models, most Bayesian
models are hierarchical. Many complex systems and processes can be approximated using
multiple levels (or layers) of simpler models. The common assumption that parameters are
conditionally independent of other parameters or data more than one level of hierarchy away
greatly simplifies computation, making hierarchical models accessible. Below, we briefly
discuss some common applications of hierarchical models and provide references for further

investigation.

Mixed effects models
Mixed effects modeling is the frequentist approach for grouped, correlated data we studied

in Lesson 11. This class of models is very popular in biology and social science applications.
See Gelman and Hill (2006); Gelman et al. (2014).

Mixture models

Mixture models provide a nice way to build nonstandard probability distributions from
simper distributions, as well as to identify unlabeled clusters/populations in the data. Mix-
ture models can be formulated hierarchically, allowing us to estimate unobserved (latent)
variables in a technique called data augmentation. We briefly explore mixture models in the
honors section of Lesson 11.

See Frithwirth-Schnatter (2006); Gelman et al. (2014).

Generalized linear models (GLMs)

These models generalize normal linear regression models in the sense that the likelihood
belongs to a more general class of distributions. The binomial and Poisson regressions
encountered in this course are examples of GLMs. Data augmentation techniques similar to

those used for mixture models make GLMs amenable to hierarchical modeling.
See Agresti (2013); Gelman et al. (2014).

Time series data

The models used in this course are often inappropriate for time series data (observations



collected over time) due to the correlation between them. Such autocorrelation can be
accounted for by introducing a hierarchical structure with parameters that evolve in time.
Examples include the popular state space and hidden Markov models.

See Prado and West (2010); Harrison and West (1999).

Spatial data

Just as observations collected across time are often correlated, observations from distinct
spatial locations can exhibit dependence. For example, we might expect a measurement at
location x to be more similar to measurement y five meters away than to measurement z
100 meters away. State space models and nonparametric models for response surfaces are
common for spatial data.

See Banerjee et al. (2014).

Neural networks

Neural networks and deep learning have become a primary tool in machine learning.
They involve layers of “neurons” that separate inputs from outputs, allowing nonlinear re-
lationships. These intermediate nodes can be thought of as latent variables in a hierarchical
probabilistic model, although Bayesian inference of neural networks is uncommon.

See Hastie et al. (2009) and this link to an online book introducing neural networks and

deep learning.

Nonparametric methods

Bayesian nonparametric models move beyond inference for parameters to inference for
functions and distributions. Finite-dimensional representations of the necessary priors often
appear as hierarchical models. Two of the most popular nonparametric priors are the Gaus-
sian process prior (typically used as a prior on continuous functions), and Dirichlet process
prior (as a prior on probability distributions).

See Gelman et al. (2014); Hjort et al. (2010).
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