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Abstract

To build agents that can collaborate effectively with others, recent research has
trained artificial agents to communicate with each other in Lewis-style referential
games. However, this often leads to successful but uninterpretable communication.
We argue that this is due to the game objective: communicating about a single
object in a shared visual context is prone to overfitting and does not encourage
language useful beyond concrete reference. In contrast, human language conveys
a rich variety of abstract ideas. To promote such skills, we propose games that
require communicating generalizations over sets of objects representing abstract
visual concepts, optionally with separate contexts for each agent. We find that these
games greatly improve systematicity and interpretability of the learned languages,
according to several metrics in the literature. Finally, we propose a method for
identifying logical operations embedded in the emergent languages by learning an
approximate compositional reconstruction of the language.

1 Introduction

The communication systems that emerge when two agents are trained to cooperate offer a window
on the evolution of human language, as well as a promising avenue for improving the collaboration
abilities of artificial agents. Much recent work studies Lewis-style [24] signaling games (Figure 1a),
where agents are trained to refer to a single object in a shared visual context. However, a general
consensus of this work is that without careful environmental pressures, agents develop successful but
uninterpretable communication schemes distinctly unlike human language [1, 5, 6, 16, 20].

We argue that the reference games typically used in these studies are ill-suited to drive linguistic
systematicity for two reasons. One is perceptual: agents can exploit inscrutable patterns in single
inputs, which leads to communication via spurious features [3]. The other reason is cognitive: human
language can convey abstract ideas, such as kinds and causes, not only reference to specific objects.
Simple reference games are unlikely to drive emergence of such abstract language. In particular,
generalizations over categories are a crucial part of language [36], helping us transfer knowledge that
may be useful in the future. For example, we would like to teach our kin not just to avoid one specific
lion, but to avoid all lions, including those that have not yet been seen. Some have even argued that
language emerged precisely from this need to teach hard-won generalizations to others [19]. With
this idea in mind, can we design an experimental setting that better catalyzes these abilities?

In this paper, we propose extensions of Lewis-style signaling games to sets. In the set reference (setref)
game, a teacher must communicate to a student not just a single object, but rather a group of objects
belonging to a concept (Figure 1b). In the concept game, each agent sees different examples of the
concept (Figure 1c). Inspired by human teaching [9], our core insight is that requiring generalization
to combinatorially large sets of (possibly unseen) objects encourages agents to learn and communicate
rich abstractions across inputs (e.g. seagulls), instead of low-level features (e.g. color #FDA448).
These tasks are more difficult than traditional reference games, and we will show with a variety of
metrics that the learned languages are more systematic, compositional, and interpretable. Finally, the
rich compositional space of concepts explored in these games allows us to probe for specific logical
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Figure 1: Communication games for the concept red triangle. Given a set of targets (red borders)
and distractors, a teacher must send a message to help a student identify the targets. In (a) reference
games, targets are identical; in (b) set reference (setref) games, there are multiple targets; and in (c)
concept games, the agents see different inputs.

operators in the emergent language. We propose a method for doing so, thereby demonstrating how
the emergent languages reflect the compositional structure of their inputs.

2 Communication Games

First imagine a generic communication game between a teacher T and student S. Let G =
(c,XT , Y T , XS , Y S) be a communication game, where c : X 7→ {0, 1} is a latent concept
to be communicated, XT = {xT1 , . . . , xTn} is a set of n inputs presented to the teacher, and
Y T = {yT1 , . . . , yTn } is a set of labels for the teachers’ inputs, defined as yTi = c(xTi ). We call xTi a
target if yTi = 1, which indicates that xTi is a member of the concept c; otherwise xTi is a distractor
and yTi = 0. XS and Y S are defined similarly for the student. Given its targets and distractors (but
not the latent concept c), the teacher must send a message m to a student that allows them to correctly
identify their own targets, where m = (m1, . . . ,mn) is a discrete sequence over a fixed alphabet
mi ∈M. Now we can define variants of this communication game as follows:

Reference game. In basic reference games, the teacher and student see the same examples (XT =
XS , Y T = Y S) and there is a single (repeated) target: xTi = xTj for all i, j where yTi = yTj = 1.1

Set reference (setref) game. Now we extend our game to sets: the teacher and student see the same
examples, but there are multiple target images encoding the concept (e.g. different red triangles).

Concept game. Finally, we propose the more abstract concept game, where the teacher and student
see different examples (XT 6= XS , Y T 6= Y S) of the same concept. When XT and Y T contain a
single positive and negative example, this is a reference game with separate inputs for each agent, a
setup which has been shown to encourage linguistic systematicity in some settings [8, 21, 22].

3 Models

Now we will formalize our models of the teacher and student. Given a communication game G, a
teacher is defined as a distribution over messages given inputs pT (m | XT , Y T ), and a student is a
distribution over targets given a message: pS(Y S | XS ,m) =

∏
i p
S(ySi | xSi ,m).

Teacher. The teacher encodes all inputs with a convolutional neural network (CNN) fTθ ; embed-
dings for targets and distractors are averaged to form target and distractor prototype embeddings
[33],2 which then conditions a recurrent neural network (RNN) used to produce the message. Let
XT

+ and XT
− denote the sets of targets and distractors in XT ; then define a prototype embedding

1For the most consistent comparison across games, our reference game has multiple identical targets and
student target decisions made independently for each input, instead of the single-target forced-choice setting.
Appendix E shows results with traditional games trained with cross entropy loss; conclusions are the same.

2Note that the teacher’s job is one of representation learning for sets [42] and thus one can use any set repre-
sentation learning method beyond the prototypical networks explored here. As a more advanced implementation,
we tried a variant of Set Transformers [23], but this did not give any tangible performance benefit.
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Figure 2: Example games, with targets (red border) and distractors for the ShapeWorld concept
blue OR rectangle (left) and the Birds concept painted bunting (right). Concepts are represented as
intensional logical formulas (top) or extensional sets of boolean input features (bottom), where each
vector is the binary representation of an individual member of the concept (e.g. blue rectangle, or the
labeled attributes of one particular bird). See Figure S1 in Appendix A for additional game examples.

xT+ = 1
|XT+ |

∑
xi∈XT+

fTθ (xi) (analogously for xT−). Then pT (m | XT , Y T ) = pRNN-DECODE(m |
proj([xT+;xT−])) where proj is a linear projection to the RNN hidden state.

Student. The student takes a message and makes predictions about the labels ŷSi independently
for each input xSi . Given the teacher message and an input image, define pS(ySi | xSi ,m) =
σ(RNN-ENCODE(m) · fSφ (xSi )), where fSφ is a separate CNN for the student.

We jointly train a teacher-student pair, including the vision modules and communication protocol, via
stochastic gradient descent to maximize the student likelihood of selecting the correct target images.
Formally, the loss for a single game is

L(T, S,G) = −
∑
i

log pS(ySi | xSi , m̂), m̂ ∼ pT (m | XT , Y T ). (1)

To maintain backwards differentiability, we use the straight-through Gumbel-Softmax [14] trick with
τ = 1, simulating samples from the teacher distribution over tokens via softmax and discretizing in
the forward pass only. For full model and training details and a link to code, see Appendix A.

4 Tasks

We examine the languages developed for our proposed communication games over two datasets: first,
an artificial shape dataset which allows us to evaluate communication over cleanly defined logical
concepts; second, a dataset of birds to test agents’ ability to learn concepts from realistic visual input.

ShapeWorld. We use the ShapeWorld visual reasoning dataset [18] (Figure 2, left). For reference
games, target images are a single object, defined by a conjunction of a shape and a color (e.g. red
triangle, green square); of the 30 possible shapes, we hold out 20% for testing. For setref and concept
games, concepts include the conjunctions tested in reference games, but also primitive concepts (e.g.
blue shapes) and arbitrary disjunctions or conjunctions of (possibly negated) shapes and/or colors.
This produces 312 concepts, 20% of which are held out for testing. These more general concepts
cannot be tested in reference games, since a single object is always identified by a shape and color.
This rules out disjunctive concepts like red OR blue that only make sense across multiple objects.
Similarly, since reference game targets must necessarily have both color and shape, we can never
guarantee that a message for a reference game only carries the semantics blue and not, for example,
blue circle, if the target is a blue circle. By looking at sets, setref and concept games allow us to more
precisely control the semantics of the concepts in each game.

Each game consists of 10 targets depicting shapes satisfying the concept, and 10 distractors. We
specifically sample “hard” targets and distractors to test understanding of conjunctions or disjunctions
(see Appendix B for details). Finally, we specify an agent vocabulary of 14 tokens and maximum
length 5, so that the communication channel has the same bandwidth as the true concept formulas;3
see Appendix C for experiments varying these parameters for both this dataset and the next one.

Birds. We next use the Caltech-UCSD Birds dataset [40] which contains 200 classes of birds with
40–60 images (Figure 2, right). As before, reference games involve a single target; setref and concept

3In the true concept formulas there are 5 shapes, 6 colors, and the 3 AND/OR/NOT operators, i.e. 14 tokens;
and the longest concept formulas have the form NOT x AND NOT y, i.e. length 5.

3



game targets are members of a specific bird class. We use 100 classes at train and 50 at test, sampling
5 targets and 5 distractors per game. The dataset contains boolean attributes (e.g. beak, size) for
individual birds and classes.4 Thus, we represent reference game concepts as the feature vector of the
target bird, and setref/concept game concepts as the feature vector of the class. In our evaluation, we
will measure how well the languages capture these features. As there is no reference language for this
task, we set the vocabulary size to 20 and the message length to 8 (though again see Appendix C).

5 Evaluation

We first measure communication success, as defined by student accuracy on held-out games from
seen and unseen concepts, with the unseen concepts testing a language’s ability to generalize
compositionally. Ultimately, however, we are interested in the systematicity of the learned languages,
which we evaluate via the following measures:

Information theoretic measures. We first ignore the specific content of messages and concepts,
and simply compute simple information theoretic quantities, by treating each distinct message and
concept as a unique value and imagining probability distributions over these values. First, we measure
the conditional entropy of teacher messages given concepts, H(M | C), averaged across seen and
unseen games; lower entropy indicates that agents use more consistent language for a fixed concept.
However, H(M | C) measures systematicity only in one direction; as a more symmetric measure,
we also use the adjusted mutual information

AMI(M,C) = (I(M,C)− E(I(M,C))) / (max(H(M), H(C))− E(I(M,C))) . (2)

Here, E(I(M,C)) is evaluated with respect to a hypergeometric model of randomness, where M
and C are assumed to be random permutations subject to the number of unique values in either
set [39]. AMI ∈ [0, 1] represents the mutual information between M and C, adjusted for chance
to maintain comparability across different distributions of messages and concepts. A higher score
indicates overall higher alignment between messages and concepts.

Topographic ρ. To more precisely measure the lexical compositionality of a language, a measure
often used in the literature is topographic ρ [4, 20, 22, 25], which quantifies the agreement between
two representational systems a la Representational Similarity Analysis [17]. We define a distance
metric between game concepts dC(ci, cj) and another between agent messages dM (mi,mj), compute
pairwise distances between concepts and between messages, and measure their alignment with
Spearman’s ρ. A high ρ indicates that a teacher sends lexically similar messages for similar concepts.

For our distance function on messages, we use the Edit (i.e. Levenshtein) distance with equal
insert/delete/replace costs. For distances between game concepts, we define two distances based on
intensional and extensional representations of concepts (Figure 2). First, we use the word-level Edit
distance between string representations of logical formulas. Second, we use the Hausdorff distance
dH , a distance function between sets of members of a concept. Let Za = {za1 , . . . , zan} be the set
of feature-based boolean representations of inputs belonging to concept a. For ShapeWorld, these
are two-hot vectors denoting the color and shape of all objects belonging to a specific formula; for
example, for the concept red, we have vectors for red triangle, red circle, and so on. For Birds, these
are boolean vectors of the attributes of each individual bird of a species. Then the Hausdorff distance
dH is the maximum distance from any point in one set to the closest point in the other: dH(Za, Zb) =
max(supi d(zai , Z

b), supj d(zbj , Z
a)), where d(a,B) = infb∈B EditDistance(a, b).

6 Results

Table 1 shows test accuracy, as measured by student classification accuracy (partial credit given),
on communication games over seen and unseen concepts for 5 models trained in each condition.
Reference game performance is high across both datasets, and agents are able to generalize well to
unseen games. Accuracy on setref and concept games is lower, with lower performance on novel
games in both datasets.5 Overall, communicating sets is a much harder task than specific reference.

4Feature vectors for individual birds in a class vary due to the visibility of features in the image; class vectors
are averaged across all individual birds, then rounded to 1 or 0.

5To calibrate setref and concept performance, Appendix D tests listeners on ideal (human) languages.
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Table 1: Student accuracy (seen and unseen concepts, where chance accuracy is 50%), conditional
entropy of messages given concepts (lower is better), and adjusted mutual information score (higher
is better), with (SD) across 5 runs.

Dataset Game Acc (Seen) Acc (Unseen) H(M | C) AMI(M,C)

ShapeWorld Ref 97 (0.4) 98 (0.3) 7.3 (0.2) 0.04 (0.00)
Setref 92 (2.2) 87 (1.6) 3.9 (0.6) 0.59 (0.08)
Concept 88 (3.4) 75 (3.0) 2.4 (0.2) 0.66 (0.07)

Birds Ref 93 (0.3) 89 (0.1) 5.9 (0.2) 0.05 (0.00)
Setref 89 (0.2) 78 (0.2) 5.2 (0.1) 0.17 (0.02)
Concept 88 (0.1) 73 (0.3) 4.1 (0.2) 0.26 (0.02)

The ability to communicate accurately, even on unseen concepts, is not necessarily indicative of more
systematic communication; generalization without compositional language is a common finding in
the literature [1, 6, 16, 22]. Instead, we find that the more difficult games produce more systematic
language. For ShapeWorld, concept game entropy over messages is lower than reference game
entropy (2.4 vs. 7.3), and AMI is higher (0.66 vs. 0.04), with setref in the middle; this pattern also
occurs in Birds. Furthermore, Figure 3 shows that topographic ρ between the languages and the (Edit
and Hausdorff) concept distances is higher for concept and setref than ref, throughout training.

Figure 4 (more examples in Appendix F) shows messages generated by agents for concepts in both
games, where we arbitrarily assign letters to agent “words” to assist with interpretation. For example,
for concept game teachers conveying the concept red AND triangle, the innermost circle is largely red,
indicating that the majority of messages sent for this concept begin with d; proceeding outward, we
see blue regions indicating the token e. Thus, concept agents consistently use the 5-token sequence
deeee to refer to red triangles (less commonly, edeee). In contrast, for different red triangles, the
language of reference game agents is strikingly inconsistent, as indicated by the extreme diversity of
colors, while setref language is somewhere in the middle. The entropies over the message distributions
for these concepts correlate with the “busyness” of the plots, reinforcing the idea that the setref and
concept languages are more consistent.

6.1 Set Size

The difference between reference and setref/concept games can be interpreted as a continuum,
ranging from referring to a single object (reference) to referring to a potentially infinite num-
ber of objects. With a small number of objects, it may still be possible to communicate only
low-level, non-generalizable features of the set, similar to the strategies adopted by our refer-
ence game agents. In contrast, increasingly large numbers of objects should put further pressures
on the semantics of the messages to not refer to individual inputs, but rather entire categories.
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Figure 5: Topographic ρ (concept Edit distance)
with varying number of targets (average over
seen/unseen splits). Each point and Ref line is
an independent run.

In Figure 5, we confirm this hypothesis, show-
ing how increasing the number of targets n
(with equal numbers of distractors) increases
language systematicity. n has a statistically
significant effect on topographic ρ for Shape-
World setref (Spearman ρ = 0.39, p = 0.029)
and concept (ρ = 0.75, p < 10−5) and Birds
setref (ρ = 0.90, p < 10−7) and concept
(ρ = 0.51, p = 0.024). When n = 1, the se-
tref game is equivalent to a reference game with
1 target and 1 distractor, and the concept game
is similar, but with agents given separate inputs.
Our results suggest that this decoupling, as pro-
posed by Lazaridou et al. [21] and often used
in the emergent communication literature, pro-
motes systematicity in some cases (Birds) but not others (ShapeWorld). We additionally show that
(1) sets are an alternative way of encouraging systematicity without needing this separation, and (2)
even with this separation, larger set sizes further improve the systematicity of the resulting language.
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Figure 4: Distribution of 300 messages and entropies for game concepts in ref, setref, and concept
settings. Messages start at the center and proceed outwards, with each colored section corresponding
to a unique token and its frequency of occurrence at that position in the message. Empty spaces
indicate end of sentence. For convenience, ShapeWorld plots are partially labeled with tokens.

6.2 Generalizing across game types

To measure the generality of the agents’ strategies, we evaluate their ability to generalize zero-shot
across game types. Table 2 shows accuracy and systematicity metrics for agents evaluated on games
of a different type. Agents trained on the setref and concept games are able to generalize to reference
games (yellow cells), producing systematic referring expressions, as they have already been biased
towards generic language. Importantly, setref game agents can generalize to concept games with
separate inputs (magenta cells), though to a lesser extent for Birds (75% vs 84%). This suggests that
sets pressure agents to learn generalizable features despite the shared input. In contrast, we see little
generalization ability from reference games to setref and concept games (orange cells), suggesting
that agents are not conveying generalizable features, but rather spurious patterns in the input [3].

7 Probing for compositionality

The richer set of concepts afforded by our setref and concept games allow for more detailed analyses
of the emergent languages beyond the standard metrics presented above. Broadly, we are interested in
whether the compositional structure of concepts is reflected in the language. For example, our agents
produce messages for the primitive concepts red and triangle, as well as the conjunctive concept
red AND triangle.6 Natural language is equipped with a composition operator, AND(m1,m2) =
m1 AND m2, that operates solely on lexical forms and whose meaning is defined as the conjunction
of the meanings of its arguments. Does a similar operator exist in the emergent language (Figure 6a)?

6We cannot do this analysis for reference games, since we cannot test primitive concepts; recall Section 4.
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Table 2: Accuracy/AMI/Topographic ρ (concept Edit distance) for agents trained on different game
types (columns), then evaluated (zero-shot) on different game types (rows). Chance accuracy is 50%.
Gray shaded cells indicate standard test-time evaluation; other cell colors are explained in the text.
Note that for ShapeWorld reference agents, we evaluate only on setref and concept games that use
the 30 conjunctive concepts tested in reference games (e.g. red triangle, blue square).

Train Ref Train Setref Train Concept

ShapeWorld
Eval Ref 98 (0.4)/.04 (.00)/.00 (.00) 91 (4.3)/.43 (.09)/.42 (.11) 83 (5.6)/.60 (.04)/.63 (.08)
Eval Setref 56 (0.1)/.02 (.00)/.00 (.00) 90 (1.3)/.59 (.08)/.12 (.03) 83 (6.7)/.66 (.07)/.09 (.01)
Eval Concept 50 (0.0)/.02 (.00)/.00 (.00) 90 (4.6)/.59 (.08)/.12 (.03) 82 (3.0)/.66 (.07)/.09 (.01)

Birds
Eval Ref 91 (0.8)/.05 (.00)/.04 (.01) 85 (1.1)/.14 (.02)/.16 (.02) 82 (0.9)/.20 (.02)/.15 (.01)
Eval Setref 64 (1.7)/.03 (.01)/.15 (.01) 84 (1.1)/.17 (.02)/.37 (.04) 78 (0.7)/.26 (.02)/.40 (.03)
Eval Concept 56 (0.9)/.03 (.01)/.15 (.01) 75 (0.9)/.17 (.02)/.37 (.04) 82 (0.6)/.26 (.02)/.40 (.03)

We propose to learn such an operator by training a model to compose messages in the emergent
language to form their conjunctions. Like the English AND, this operator must be able to combine
any of the concepts in the language, and must crucially generalize to novel combinations of features.
If, given new concepts, we can reconstruct a message that induces the right behavior in the student,
this suggests our model has learned some analog of AND in the language. The reconstruction
accuracy of this model can then be interpreted as a much more explicit measure of compositionality
than the measures explored above: it reveals the degree to which the syntax of the emergent language
operationalizes the specific logical operations present in the underlying space of concepts.

Our method is inspired by the Tree Reconstruction Error (TRE) metric proposed by Andreas [1],
which learns a compositional approximation to a representation space, assuming the latent compo-
sitional structure is known.7 However, there are several crucial differences in our method that are
optimized for probing for linguistic structure. First, we learn a set of arbitrary composition operations,
instead of imposing a predefined operation (e.g. elementwise addition). Moreover, these learned
composition operators are actually valid and interpretable linguistic transformations on messages,
rather than operations (like addition) that work only on internal representations of sub-concepts. And
finally, we evaluate our operators on held-out concepts, examining how the reconstructed messages
serve the ultimate communicative goal: inducing the correct generalization behavior in the student.

7.1 Learning an Approximate Compositional Reconstruction (ACRe)

Let us first formalize the learning problem: after training our agents, we have a dataset of message
and concept pairs T = {(mi, ci)} generated by a teacher for each game. Each concept is one of a set
of logical forms L(C) defined inductively over a set of primitive concepts C (e.g. red, triangle) and
composition operations Ω as follows:

1. Every primitive concept is in L(C): C ⊆ L(C).
2. Every composition of concepts is a concept: let Ωn be the set of n-ary composition opera-

tions. Then ∀n, (c1, c2, . . . , cn) ∈ L(C)n, ω ∈ Ωn, we have ω(c1, c2, . . . , cn) ∈ L(C).

T defines a probability distribution over messages given concepts: pT (m | c). Our aim is to
learn an Approximate Compositional Reconstruction to these messages p̂η(m | c), composed of
η-parameterized message distributions that factorize along the compositional structure of L(C):

p̂η(m | c) =

{
p̂cη(m) if c ∈ C, i.e. c is primitive
Em̂i∼p̂η(mi|ci)

[
p̂ωη (m | m̂1, . . . , m̂n)

]
if c = ω(c1, . . . , cn),

(3)

7We cannot apply TRE directly to our setting. Andreas [1] applied TRE to a standard reference game, where
targets are represented as conjunctions of shape and color features (e.g. blue square, red triangle). As we
mention in Section 4, because reference games cannot test primitive concepts like red and triangle, Andreas [1]
proposed to learn representations for primitives which can then be composed via some (predefined) composition
function. However, in our setting, it makes little sense to learn arbitrary representations for primitive concepts,
when we actually have real messages for such concepts in the first place, hence the method we propose.
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Figure 6: Our ACRe procedure. (a) Does a lexical analog of AND exist in our emergent language?
(b) We first train primitive LMs to mimic the distribution of agent messages given a fixed concept. (c)
We then train composition operations by sampling arguments from primitive LMs, then training a
seq2seq model to mimic the agent message produced for a higher-order concept.

where p̂cη(m) is a model of the distribution of messages for primitive concept c, and p̂ωη (m |
m1, . . . ,mn) is a learned lexical analog to operation ω that takes in messages and outputs a distri-
bution over composed messages. Given a concept c, we can sample a message from p̂η(m | c) by
either sampling directly from p̂cη (if c is primitive) or recursively sampling messages mi from the
constituents of c, then sampling from the corresponding p̂ωη .

We implement p̂cη and p̂ωη as small 2-layer transformer-based language models (LMs) [38]. For each
c, p̂cη is an unconditional LM (i.e. we have an LM for red, triangle, etc.). For n-ary operations ω,
p̂ωη is a sequence-to-sequence (seq2seq) model decoding from the concatenated arguments: p̂ωη (m |
m1, . . . ,mn) = pdecode

η (m | m1 [SEP] m2 . . . [SEP] mn). Note that this formulation imposes few
constraints on the mechanism of the composition operator: for example, we are not enforcing that
there exists a token denoting conjunction (AND), or that the arguments must be copied verbatim into
the output. These constraints, generally true of human languages, could be explored in future work.

To train ACRe, let Tc = {(mi, ci) ∈ T | ci = c} be the set of message-concept pairs with concept
c, and Tω = {(mi, ci) ∈ T | ci = ω(·)} be the set of messages where ci uses ω. Now, for
each primitive c ∈ C, train the LM p̂cη on Tc to approximate pT (m | c). Then, freezing these
models, for n = 1, . . . , N , ω ∈ Ωn, train the composition model p̂ωη on Tω. Specifically, given
a pair (m,ω(c1, . . . , cn)), first sample messages for the sub-concepts ci from our frozen models:
m̂i ∼ p̂η(mi | ci).8 Then, train the composition model to maximize p̂ωη (m | m̂1, . . . , m̂n). For
example, given a message bca for the concept red AND triangle, we first sample messages for red
and triangle from p̂red

η and p̂triangle
η , then train p̂AND

η to decode bca from these messages (Figure 6).
Full training and model details are in Appendix G.

7.2 Evaluation and results

After training, each p̂ωη is a learned lexical analog to the composition operation ω. To test whether
our approximation has learned the semantics of the language, we hold out 20% of conjunctive and
disjunctive concepts c′i during training and sample messages for these concepts from the learned
p̂η(m | c′i) according to Equation 3. We evaluate how well these reconstructed messages encode
the concepts via (1) lexical overlap with the true teacher messages (as measured by BLEU) and (2)
student performance when given our language and a game for the corresponding concept.9

Results are in Table 3. The upper bound on performance is given by the true Teacher language,
pT (m | c). We also use language sampled randomly from (1) teacher messages for any concept
pT (m) (Random) and (2) teacher messages for the Closest concept as measured by Edit distance
(breaking ties randomly). ACRe’s performance is a measure of the degree of compositionality in the
language, upper bounded by the teacher language and lower bounded by the random baseline. The
results reveal some degree of compositional structure: ACRe reconstructs the training data well and
crucially outperforms baselines in predicting messages for unseen concepts. Of course, our ACRe

8As presented, this procedure is only possible if the composition models can be trained and frozen in a
specific order without circular dependencies. For example, we cannot naively train p̂ωη on concepts of the form
ω(ω(·)), since sampling from the inner ω requires an already-trained p̂ωη . Learning from arbitrary concepts is
possible by backpropagating through samples (e.g. via Gumbel-Softmax), which we leave for future work.

9In these experiments, we run ACRe on agents trained on the full set of 312 concepts in ShapeWorld, since
we are not testing compositional generalization of the agents, but of ACRe.
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Table 3: ACRe evaluation. (SD) across 5 runs. In the highlighted cells we conduct paired t-tests,
comparing ACRe to Closest; * indicates significance at p < 0.05.

Train Test
Game Language BLEU-1 BLEU-4 Student Acc BLEU-1 BLEU-4 Student Acc

Setref Teacher 100 (0.0) 100 (0.0) 91 (2.7) 100 (0.0) 100 (0.0) 86 (5.2)
ACRe 96 (2.1) 73 (5.0) 81 (3.4) 91 (3.9)* 52 (10.0)* 65 (3.4)*
Closest 78 (4.6) 28 (6.2) 48 (0.7) 88 (3.8) 38 (9.0) 56 (0.7)
Random 71 (6.6) 22 (4.3) 50 (0.0) 73 (7.4) 24 (5.5) 50 (0.3)

Concept Teacher 100 (0.0) 100 (0.0) 88 (4.2) 100 (0.0) 100 (0.0) 84 (4.4)
ACRe 95 (3.4) 80 (7.6) 82 (2.2) 87 (6.9)* 59 (12.2)* 70 (4.0)*
Closest 64 (3.7) 28 (6.2) 48 (1.6) 76 (3.2) 38 (6.7) 56 (1.3)
Random 54 (3.0) 19 (2.8) 50 (0.2) 56 (2.2) 20 (3.2) 50 (0.4)

yellow

green

triangle

Teacher ACRe Closest

yellow AND
triangle
(ACRe train)

green AND
triangle
(ACRe test)

91% 75% 65%

94% 68% 55%

Student Acc

Student Acc

Teacher Random

48%

49%

Figure 7: Composition in the emergent languages. A concept game teacher’s messages for primitive
concepts yellow, green, and triangle, conjunctions yellow AND triangle and green AND triangle
(where green AND triangle is an unseen combination for ACRe), and predicted messages according
to ACRe and other baselines. Color key same as Figure 4.

model trails Teacher language accuracy by 16–20 points. This gap could stem from a failure of ACRe
to find the correct compositional generalization, or lack of compositionality in the language itself.

A qualitative analysis supports the interpretation that the compositional operations are not always
interpretable. Figure 7 shows an example of message distributions for the primitive concepts yellow,
green, and triangle, as well as distributions for the conjunctive concepts yellow AND triangle and
green AND triangle, with predictions from ACRe and baseline models. The message for yellow AND
triangle is intuitively composed out of tokens concatenated from both primitives similar to natural
language [12]. However, the message green AND triangle uses tokens from green, but none from
triangle, thereby violating the mutual exclusivity principle of language [28]. Regardless, in both cases
our ACRe model is able to approximate such messages better than the other baselines. An exciting
avenue for future work is encouraging models to develop operators more akin to human language,
and evaluating their acquisition by searching among a more restricted class of ACRe models p̂ωη .

8 Related Work

Promoting compositionality in multi-agent communication. Compositionality and systematicity
in emergent languages have long been a priori goals in multi-agent communication. Such languages
may be easier to interpret, teach, and integrate with human language via supervised learning [26].
Towards this end, a large body of work (see [20] for review) has explored what factors might
encourage compositionality in emergent communication, such as teachability and iterated learning
[25, 30], agent capacity [31] and regularization [27], self-understanding [8], and game design [16, 22].
However, most of this existing work operates within the limited paradigm of the Lewis [24] reference
game. In this paper, we propose to revisit and revise the fundamentally limited reference game
objective: inspired by human teaching [9] and generic language [36], we encourage our agents to
communicate generalizations over objects, which significantly increases linguistic systematicity,
orthogonal to any of the alternative pressures proposed in related work.

9



Measures of compositionality in languages. Crucial to the problem of promoting compositional-
ity in emergent communication is how to measure it in the first place. The literature has seen a wide
variety of methods [1, 2, 4, 6, 31] claiming to more accurately align with human notions of composi-
tionality, some of which are reported here. Most of this existing work focuses on outputting a broad
scalar quantity that represents the degree of compositionality in a language [e.g. topographic ρ; 4]. In
contrast, ACRe is a much more granular attempt at measuring not just how much compositionality,
but what kinds of compositionality emerge, by actually learning, evaluating, and interpreting each
distinct compositional operation.

This brings our work more in line with more precise studies of the emergence of composition
operations in emergent languages [34, 35] and the analyses of van der Wal et al. [37] and Andreas
[1]. In contrast to Steinert-Threlkeld [34, 35], who studies simpler settings where compositionality
can be verified with manual inspection, we propose a way to measure compositionality in more
complex languages that clearly do not exhibit perfect compositionality, but may still have learnable
latent structure. In contrast to van der Wal et al. [37], who use grammar induction techniques for
syntactic analysis of emergent languages, we tailor our syntactic analysis to messages generated for
a known semantic space of concepts. This lets us approximate concrete syntactic operations in the
language, and evaluate how well the approximations capture the corresponding semantic operations.
Lastly, our method ACRe builds off of the TRE metric developed by Andreas [1], and we describe
this relationship in Section 7.

ACRe as program induction and grammatical inference. Finally, ACRe is reminiscent of a
program induction or grammatical inference problem, where inputs are agent messages for primitive
concepts, and outputs are the messages produced after some composition has been applied to the
inputs. Our task is to discover the (ideally simple and interpretable) lexical programs that implement
the corresponding transformation in semantic space. Because we have no priors over what lexical
transformations, if any, the emergent languages might implement, we search for programs among a
general class of seq2seq translation models. However, in this domain, human languages have much
simpler lexical operators involving concatenation and infix notiation (e.g. x AND y), and in the
future, we would like to push emergent languages towards stricter compositionality. One way of
benchmarking more cleanly compositional languages is to restrict ACRe models to more constrained
and interpretable programs learned with techniques from the program synthesis [11] or grammar
induction [10] literature.

9 Conclusion

We have proposed extensions of referential games to sets of objects, and found that the need to
convey generalizable categories leads to the development of more systematic languages, whether
inputs are shared (setref) or unshared (concept) across agents. Moving forward, the richer space
of concepts afforded by our setref and concept games are a promising testbed for studying the
emergence of higher-level linguistic phenomena, such as quantifiers or probabilistic language. Finally,
while ACRe reveals some compositional structure in the emergent languages as-is, the learned
composition operations are not particularly interpretable. Future work should identify what kinds of
environmental or architectural constraints might encourage more transparent composition in learned
artificial languages. One challenging evaluation of compositionality along these lines is to measure
the ability of agents to extrapolate to longer and more complex concepts not seen during training (e.g.
green OR (blue AND triangle)), and evaluating ACRe’s ability to capture this recursive structure.

10 Broader Impact

Our work investigates agents communicating in artificial and isolated environments, and thus has
limited immediate societal impact. However, we can imagine that with future advances in research and
compute, agents may learn linguistic strategies to collaborate on real-world problems in increasingly
high-stakes domains, and it will be important to ensure that the learned languages are interpretable,
safe, and reliable. Our work has potential positive benefits in these scenarios: our proposed games
encourage agents to learn more human-like linguistic behavior, which might ease collaboration with
humans; and ACRe is a tool for evaluating and interpreting learned languages. However, future work
is needed to see whether these tools remain reliable as we scale up our agents and tasks.
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A Model, training, and dataset details

All models are trained end-to-end with the Gumbel-Softmax [14] trick with the Adam [15] optimizer
with learning rate 0.0001. Models are trained on a single Titan Xp GPU on an internal cluster.
Training time is typically 6-8 hours on 4 CPUs and 32GB of RAM. Code and data are available at
https://github.com/jayelm/emergent-generalization.

A.1 ShapeWorld

Model. fTθ and fSφ are 4-layer convolutional neural networks, each consisting of a 64-filter 3x3
convolution, batch normalization, ReLU nonlinearity, and 2x2 max-pooling layer, as used in the
few-shot learning literature [33]. RNN encoders and decoders are single layer Gated Recurrent Units
(GRUs) [7] with hidden size 1024 and embedding size 500. We train with batch size B = 128.

We noticed that for ShapeWorld specifically, our setref and concept games easily converged to local
minima with approximately 83% maximum accuracy by only considering color features and ignoring
shape features. In these experiments, we had speakers sample tokens from a mixture of 90% the
original logits, and 10% a uniform distribution over tokens, to encourage exploration (similar to
ε-greedy policies in RL), which improved performance across all games.

Data. As aforementioned, for reference games there are 30 concepts (conjunctions of shape and
color e.g. blue square, green ellipse), and for setref and concept games there are 312 total concepts
(see Appendix B), of which 80% are reserved for training and 20% are reserved for test. From the
training concepts, we sample 20,000 base games to use as our training set, each with 40 targets and
distractors each. At training time, we perform augmentation by randomly selecting 10 targets and 10
distractors given to both teacher and student, meaning that the total set of games is combinatorially
large (over

(
50
10

)
combinations for reference games, and

(
50
10

)2
combinations for setref and concept).

We set up validation and test datasets with 2000 games each, divided among seen and unseen concepts,
with no augmentation performed. We train over 100 epochs (defined by a single pass through 20,000
augmented games) until average performance on the validation set is maximized.

License. ShapeWorld is distributed under an MIT license (https://github.com/AlexKuhnle/
ShapeWorld/blob/master/LICENSE).

A.2 Birds

Model. fTθ and fSφ is an ImageNet [32]-pretrained ResNet-18 [13]; similar results were observed
for models trained from scratch. Like ShapeWorld, RNN encoders and decoders are single layer
GRUs with hidden size 1024 and embedding size 500. We train with batch size B = 16 and
preprocess images with ImageNet mean normalization.

Data. From the 100 training classes, we sample games dynamically by randomly selecting 5
positive targets from the class and 5 negative targets randomly. Like in ShapeWorld, this makes
the number of possible training games combinatorially large. We set up validation and test datasets
with 400 games each divided among seen and unseen concepts. We define an epoch as a single
pass through 1,000 augmented training games, and like before, select the model with the highest
performance on the validation set after 100 epochs.

For additional example games from both datasets, see Figure S1.

License. Caltech-UCSD Birds dataset is not distributed under a license; images are retrieved from
Flickr and are the property of the respective photographers (http://www.vision.caltech.edu/
visipedia/CUB-200-2011.html).

B ShapeWorld concepts

The 312 ShapeWorld concepts are either:
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belly:yellow AND 
size:small AND...

(Yellow Warbler)

bill:cone AND 
breast:red AND...

(Painted Bunting)

belly:white AND 
wing:gray AND...
(Laysan Albatross)

Figure S1: More example games for both ShapeWorld and Birds datasets.

1. A single primitive shape (triangle, square, circle, ellipse, rectangle) or color (red, blue,
green, yellow, white, gray), possibly negated (e.g. not gray);

2. A disjunction of two (possibly negated) primitives (e.g. blue or yellow, circle or not red);

3. A conjunction of two (possibly negated) primitives (e.g. red and triangle, red and not
triangle).

We enumerate all (boolean-equivalent) possible formulas, then discard formulas which are tautologi-
cally true (e.g. not yellow or not red) or unsatisfiable (e.g. circle and square).

For each concept, sampling positive and negative shapes uniformly often results in games that do
not specifically test the concept. For example, for the concept gray and not circle, there may not be
any negative gray circles, so the agent could just infer the concept gray. To ensure that concepts
are fully tested, for disjunctive concepts, we sample 1/3 targets that satisfy only the left side of the
disjunction; 1/3 that satisfy only the right side; and 1/3 that satisfy both. For conjunctions, we sample
1/3 distractors that only fail to satisfy the left side of the disjunction; 1/3 that only fail to satisfy the
right side; and 1/3 that fail to satisfy both sides.

Code used for generating the dataset is available at https://github.com/jayelm/
minishapeworld/tree/neurips2021.

C Varying communication channel size

To see whether our results hold as we vary the bandwidth of the communication channel, we run
agents on both datasets with the following configurations of (vocabulary size, max message length):

• Small (S): (3, 3), leading to only 27 possible messages, which is not enough messages to
uniquely identify each concept in any of the games explored here

• Medium (M): (5, 5)

• Large (L): (100, 20)

• X-Large (XL): (1000, 20)

Results are in Figure S2. Our conclusions are as follows:

1. Training for concept games is less stable, and with very small (Shapeworld S) and very large
(Birds XL) vocabulary sizes is often unable to learn.

2. Outside of the concept game agent failures, accuracy on both seen and unseen concepts
tends to increase as we increase the communication channel size.
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Figure S2: Accuracy and language systematicity metrics while varying the communication channel
bandwidth for both datasets. Each dot represents one run.

3. Across all games, the information theoretic measures tend to show less systematicity as we
increase the communication bandwidth. This is likely because as the number of vocabulary
tokens and message length increases, the chance of sampling an errant token while generating
a message increases, which is then treated as a completely unique message under our
information theoretic measures; thus some increased entropy and reduced AMI is expected.
(a) Regardless, when comparing between games with equal channel sizes, setref and

concept games generally have more systematic language. Concept games are more
consistently systematic than reference games, except for the degenerate settings where
it is unable to learn. Setref games are more systematic than reference games, except as
measured by AMI in large vocabulary spaces (L, XL). The differences across the game
types are smaller when the channel size is very large, e.g. in Birds L and XL.

4. Similarly, across all channel sizes, topographic ρ tends to be higher for setref and concept
games. Somewhat mysteriously, the topographic ρ measures do not respond to varying
channel sizes as the information theoretic measures do. In fact, for ShapeWorld, increasing
channel size increases topographic ρ, especially for reference games. More work is needed
to identify the sources of this effect.

To summarize: for communication channel sizes reasonably sized according to the dataset (e.g. the
medium setting here, and the setting reported in the main text), our conclusions hold; for extremely
small or large communication channel sizes, our conclusions still hold, but care must be taken to
ensure stable training in these regimes, especially for concept game agents.

D Upper bounds on listener performance for setref and concept games

One way of calibrating the quality of emergent languages developed by our agents in setref and
concept settings is to evaluate a listener on the set classification task given an “ideal” language.
While we do not have human data generated for these games, we can use proxies to obtain upper
bounds on listener performance. For ShapeWorld, we give the listener the ground-truth concept
descriptions; for Birds, we use a randomly sampled caption associated with one of the images in the
target class, using the language corpus collected by Reed et al. [29]. Table S1 shows results. With the
true ShapeWorld concepts, listeners are able to attain near-perfect performance, suggesting that the
agents in our settings have an imperfect understanding of the true concepts in each game. However,
for Birds performance, emergent language performance is actually comparable to the ground-truth
language performance (at 79% and 71%) performance on seen and unseen tasks, respectively). This
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suggests that the emergent languages for this task do quite well, even reaching the upper bounds on
performance for the agent architectures we explore in this paper.

Table S1: Performance of listener agents on the ground-truth setref/concept task when given ideal
(human) languages. Note setref and concept are the same, since there is no teacher input.

Dataset Acc (Seen) Acc (Unseen)

ShapeWorld 99.8 (0.1) 99.8 (0.1)
Birds 79.3 (0.4) 70.6 (2.0)

E Experiments with traditional cross-entropy reference games

We presented an atypical formulation of reference games as consisting of multiple targets, with
student decisions made independently:

pS(Y S | XS ,m) =
∏
i

pS(ySi | xSi ,m), (4)

where students are trained with the binary cross entropy loss in Equation 1, restated here for conve-
nience:

LBCE(T, S,G) = −
∑
i

log pS(ySi | xSi , m̂), m̂ ∼ pT (m | XT , Y T ). (5)

This was done to keep training objectives and models identical across games, and to keep the amount
of training data consistent (i.e. there are exactly the same number of targets and distractors seen by
each agent across training).

However, the typical reference game has a single target: instead of Y S ∈ {0, 1}n, we have a single
target tS ∈ [1, n] denoting the index of the single positive example. Then the student probability that
input i is the target is the softmax-normalized

pS(i | XS ,m) =
exp(RNN-ENCODE(m) · fSφ (xSi ))∑
i′ exp(RNN-ENCODE(m) · fSφ (xSi′))

and the training objective for a single game is

LXENT(T, S,G) = − log pS(tS | xSi , m̂), m̂ ∼ pT (m | XT , Y T ). (6)

To ensure that our alternative formulation did not affect results, we ran 5 experiments with the
standard reference game trained with cross entropy loss, with a single target and 10 distractors.
Figure S3 summarizes the relevant statistics; besides slightly higher topographic ρ and AMI for the
cross-entropy reference games for ShapeWorld, there are no qualitative differences compared to our
reference game formulation and our conclusions are unchanged.

F Additional plots of speaker messages

See Figure S4 for additional plots of teacher messages made for ShapeWorld and Birds games. Overall,
the plots show a general reduction in language complexity from ref to setref to concept, although
some quirks emerge: for example, some characters (e.g. e in concept) appear to be overloaded (across
green ellipse and red), and concept uses similar language for painted bunting and yellow warbler.
White gaps indicate end of sentence, so there are games where the speaker teacher utters nothing (e.g.
blue or not circle concept; not red setref).

G ACRe model, training, and dataset details

Like the agents, ACRe models are trained with the Adam optimizer and learning rate 0.0001 on a
Titan Xp GPU. Training ACRe takes around 1-2 hours on 4 CPUs and 16GB of RAM.
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Models. p̂cη is implemented as an unconditional Transformer [38] LM with 2 hidden layers, 2
attention heads, a word embedding size of 50, hidden and intermediate sizes of 100, and p̂ωη has the
same decoder, but also has a Transformer encoder with identical parameters and cross attention from
the decoder to the encoder. The vocabulary of the Transformers are the vocabulary of the emergent
language plus a special [SEP] token used to concatenate argments for higher-order ω operations.
These are implemented with Huggingface’s Transformers library [41].

Concretely, this means that for ShapeWorld, we have 11 unconditional transformer LMs modeling
each p̂cη, and 3 transformer LMs, one modeling the unary operation NOT, and two modeling AND
and OR.

Data. To train ACRe to approximate the language for a teacher-student pair, we sample 200000
messages from the teacher, evenly distributed across all games. These are then stratified into data
used to train each primitive LM and data used to train each higher order operation. All LMs are
trained with standard language modeling techniques with teacher forcing. We first train the primitive
LMs on their respective data. Then we train the unary NOT model on concepts of the form NOT(c)
where c is primitive, sampling a message for c using the primitive models. Finally, we train the AND
and OR models on the conjunctive and disjunctive concepts, sampling arguments from the primitive
models—and the NOT model, if the argument is negated.

We train ACRe models for 20 epochs and do early stopping as follows: for the training of the
primitives and the NOT model, we divide the agent messages into 90% training data and 10% data,
and define one epoch as one pass through the training data, stopping training once performance on
the validation data is maximized. For the training of the AND and OR models, since we would like to
test compositional generalization, we divide the data by concept: we stratify all unique conjunctions
and disjunctions into a train/val/test split of 80%, 10%, and 10% respectively. Models are trained
on messages representing the 80% of training concepts (1 epoch = 1 pass through this data), with
early stopping performed when performance is maximized on the messages generated for the unseen
validation concepts. Finally, we evaluate on the final 10% of unseen test concepts. To produce
the numbers presented in Table 3, we evaluate listener and BLEU-1 performance across 110000
ShapeWorld games and 7000 Birds games (i.e. 5 passes through the train and test data for each
dataset), grouping the metrics by whether the concept belongs to either the train/val or test ACRe
splits.

Note that we do not test generalization of the NOT operation as there are too few NOT operations
to be able to generalize properly. We verify this by training our NOT model to attempt to predict
the (perfectly compositional) ground truth concepts: in other words, the task is to predict green
from not green, blue from not blue, and then use these to finally predict the negated version of red.
However, the model completely fails to generalize as there are only 10 unique concepts, so the model
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Figure S3: Accuracy and measures of language systematicity for reference games, setref games, and
concept games, as well as reference games trained with the traditional cross entropy (xent) objective.
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Figure S4: Additional plots of teacher messages for selected ShapeWorld and Birds games. Most
ShapeWorld concepts are not tested in reference games, so those plots are not available.

simply memorizes the training set. Note that we still use the NOT model in sampling messages for
conjunctive and disjunctive concepts that include NOT(c) as an argument.
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