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Figure 1: (left) Several examples of handwritten text and shapes before and after beautification. The beautified results are found by shifting
the strokes closer to means of token clusters. Notice how the beautified results are more consistent and easier to read, yet they still have the
variation and style of the original writings. (right) Example tokens generated from writing “SIGGRAPH.”

Abstract

In this paper, we propose a general purpose approach to handwrit-
ing beautification using online input from a stylus. Given a sample
of writings, drawings, or sketches from the same user, our method
improves a user’s strokes in real-time as they are drawn. Our ap-
proach relies on one main insight. The appearance of the average of
multiple instances of the same written word or shape is better than
most of the individual instances. We utilize this observation using a
two-stage approach. First, we propose an efficient real-time method
for finding matching sets of stroke samples called tokens in a po-
tentially large database of writings from a user. Second, we refine
the user’s most recently written strokes by averaging them with the
matching tokens. Our approach works without handwriting recog-
nition, and does not require a database of predefined letters, words,
or shapes. Our results show improved results for a wide range of
writing styles and drawings.
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1 Introduction

For thousands of years handwritten documentation has been a pri-
mary method for communication. The common use of paper and
pencil provides an intuitive and simple user interface for creating
a wide variety of artifacts from everyday notes to technical docu-
ments and even artistic illustrations. While pencil and paper have
proven to be very versatile, it takes numerous years of study to learn
how to write legibly. Even after significant schooling many people’s
notes are still difficult to read without being carefully and slowly
written.

Recently, there has been an increase in interest in the tablet form
factor for computers, which was lead by an associated interest in
alternative methods for user interaction beyond a keyboard and
mouse. These include the use of multi-touch and stylus input. The
use of a stylus with a tablet computer closely mirrors that of pencil
and paper, while providing the ability to re-imagine and improve
the experience.

In this paper, we propose a novel approach to beautifying hand-
written notes using a tablet and stylus. Our approach relies on one
main insight. The average of multiple instances of a handwritten
word or shape is in general better than the individual instances. For
example, Figure 1 shows several examples of words or shapes be-
ing written multiple times. Notice the significant variation in each
instance. If we pull the strokes towards the mean, a more consis-
tent and pleasing result is achieved. Furthermore, when averag-
ing is preformed throughout a document variation in the writing is
reduced, which increases its overall readability and visual quality.
Thus we gain back some of the benefits of typed text, while still
maintaining the versatility and ease of use of stylus-based input.

Our approach possesses several critical properties. First, the end re-
sult are notes in the user’s handwriting. That is we do not perform
handwriting recognition followed by replacing the user’s handwrit-
ten text with typed text. In fact, we do not perform handwriting
recognition at all. Second, we improve the appearance of many
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written forms, such as text, Chinese characters or commonly drawn
shapes. Previous approaches have either focused exclusively on
text [Simard et al. 2005; Zanibbi et al. 2001], shapes [Pavlidis and
Van Wyk 1985; Igarashi et al. 1997; Arvo and Novins 2000] or
drawings [Dixon et al. 2010; Orbay and Kara 2011; Thiel et al.
2011; Lee et al. 2011; Limpaecher et al. 2013]. The exception is
the work of [Lu et al. 2012] which uses a data driven approach to
style transfer that may be used to beautify strokes from both draw-
ings and writings. Since we do not rely on handwriting recogni-
tion, our approach performs well on notes that contain many types
of drawn items, and is agnostic to the user’s language. Finally, we
propose a real-time method that transitions a user’s original strokes
into refined strokes shortly after they are written.

We represent the user’s strokes using overlapping fixed length se-
quences of stroke samples called tokens. The tokens represent parts
of words or shapes and contain information about both strokes (pen
down) and the spacing between strokes (pen up). The samples
within a token may only include a part of a single stroke or may
span multiple strokes as shown in Figure 1. We perform beautifica-
tion by averaging a user’s most recently written token with similar
previously written tokens. It is critical to perform this averaging
operation using the correct stroke sample representation. An aver-
age within the space must produce a result that agrees with what we
would intuitively understand as an average. For instance, the aver-
age of multiple handwritten instances of the word “stylus” should
still look like “stylus”, Figure 1. Our solution is a stroke sam-
ple representation using curvature-based sampling [Whitney 1937;
Mokhtarian and Mackworth 1992; Dudek and Tsotsos 1997]. This
representation along with clustering allows for the efficient real-
time search of similar tokens in a large database of user stroke sam-
ples. Results are shown for numerous users writing various forms
of text and shapes. Our user studies show a clear improvement in
the consistency and quality of a user’s handwriting.

2 Related work

Numerous papers have explored methods for improving a user’s
handwriting or drawings. The early work of [Pavlidis and Van Wyk
1985] explores automatic techniques to beautifying geometric
drawings by enforcing various relations, such as the collinearity
of lines or the similarly of their length. A similar approach was
proposed in [Igarashi et al. 1997] except they offer the user several
choices when beautifying. Fluid Sketches [Arvo and Novins 2000]
interactively morphs a user’s drawings into ideal geometric shapes
using a dictionary of pre-defined basic shapes. Recently, [Orbay
and Kara 2011] propose a sketch beautification approach that ex-
pands upon these approaches using a method that automatically
learns how to parse a drawing, and [Baran et al. 2010; Thiel et al.
2011] both propose methods to smooth drawn curves while main-
taining detail. In [Zanibbi et al. 2001] they explore the improve-
ment of handwritten mathematical expressions by first interpreting
the written equations and then warping them to improve readabil-
ity, while [Simard et al. 2005] normalize text for better alignment.
Similar to our approach both of these methods attempt to maintain
the user’s style. An alternative approach was proposed by [Lu et al.
2012] that uses style transfer to beautify strokes. They propose first
collecting a set of high-quality strokes from a trained artist, which
may then be transferred to the strokes of a novice’s drawings or
writings. While this approach could potentially be used to beautify
a user’s own handwriting, [Lu et al. 2012] focus primarily on style
transfer. In addition, [Lu et al. 2012]’s technique only refines the
strokes themselves; in contrast, our method also models the spacing
between strokes, which we found important in beautifying a variety
of writing styles and other marks.

Taking advantage of domain specific knowledge, iCanDraw [Dixon
et al. 2010] aids user’s in drawing faces. Recently, ShadowDraw

[Lee et al. 2011] helps a user sketch by interactively matching their
drawing to images. The images provide suggestive contours to the
user to guide their strokes in a manner similar to tracing. The con-
current work of [Limpaecher et al. 2013] uses crowdsourcing to im-
prove sets of inherently aligned drawings produced by tracing the
same image. They use a similar observation as in our work that the
average or consensus of numerous drawings is in general better than
the individual drawings. Unlike the approaches described above,
our approach does not use predefined shapes, images, parsers or
recognizers for beautification. As a result, our approach may be
used in a wide variety of scenarios.

Methods for aiding 3D drawing and sculpting are also popular. In
[Rivers et al. 2012] they propose an interface for enabling an un-
skilled user to create a 3D physical replica of a 3D model. Teddy
[Igarashi et al. 1999], which was improved upon by [Karpenko and
Hughes 2006], allows a user to create 3D objects by drawing a 2D
sketch. A survey of similar approaches may be found in [Olsen
et al. 2009]. A method for drawing in 3D was recently proposed by
[Schmid et al. 2011].

Related to the improvement of hand-drawn sketches is the study of
what lines people draw when sketching. In [Cole et al. 2012] they
explore the lines drawn to convey the shape of 3D objects, while
[Eitz et al. 2012] study how humans sketch various objects.

While our work does not involve handwriting recognition, we bor-
row several concepts and ideas from this area. Handwriting recog-
nition may be split into two groups, online and off-line approaches
[Plamondon and Srihari 2000]. Online approaches [Bahlmann et al.
2002; Graves et al. 2009; Bahlmann and Burkhardt 2004] use as
input the coordinates of the stylus as it moves in time. Off-line ap-
proaches [Senior and Robinson 1998; LeCun et al. 1998; PI6tz and
Fink 2009] use either rendered or scanned pixel data from written
characters with no temporal information. Handwriting databases
[Guyon et al. 1994] typical store online stylus input using strokes
sampled at even time intervals, while many handwriting approaches
resample the strokes an even spatial intervals [Jain and Nambood-
iri 2003]. In contrast we propose a curvature-based approach to
resampling that has specific benefits for our application.

Similar to our method, many online approaches use a combination
of both online and off-line features [Graves et al. 2009; Vincia-
relli and Perrone 2003]. These include online methods for stroke
alignment using dynamic programming [Bahlmann and Burkhardt
2004; Jain and Namboodiri 2003], and features computed from off-
line stroke renderings [Graves et al. 2009]. Our approach uses on-
line features for fast and efficient retrieval of potential matches, and
off-line features for later verification. Another area related to our
work is the online retrieval of handwritten text [Jain and Nambood-
iri 2003; Jawahar et al. 2009], which also uses similar representa-
tions to those used by handwriting recognition.

Our approach has some interesting similarities to the non-local
means approach to image de-noising [Buades et al. 2005]. Non-
local means de-noises an image patch by finding similar image
patches and averaging them together, much in the same way we
search for similar stroke tokens.

3 Approach

In this section, we describe our pipeline for beautifying a user’s
handwritten notes using the temporal information provided by a
stylus. We begin by discussing our stroke representation using a
curvature-based resampling of the raw stylus input. Next, we de-
scribe how we refine a user’s strokes using a set of matching tokens.
A token is defined as a sequence of stroke samples. For instance, a
token may represent a simple shape or several written letters, Fig-
ure 1. Finally, we describe how we efficiently find sets of matching
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Figure 2: lllustration of stroke resampling using uniform distance resampling and curvature-based resampling. The resampled strokes are
shown in red. The grey plots illustrate the change in orientation and magnitude of the stroke samples through time. The amount of darkness
indicates the stroke’s magnitude. The stroke pressure is shown in green. Notice the samples from the curvature-based approach are more

concise and better aligned.

tokens in a large token database using a clustering based approach.

We assume we are given a sequence of raw stylus input indicating
the stylus’s position and pressure over time. We represent the sty-
lus’s samples by storing the difference vectors between the stylus
positions i.e. ® = {¢1,...,¢a} with ¢; = {z;,y;, p;} where
(x4, ys) is the difference in the stylus’s pixel position between sam-
ples ¢ — 1 and ¢. p; is the stylus’s pressure. We denote the mag-
nitude and orientation of these difference vectors as r; = ||z;, yi||
and 0; = arctan(y;, z;) respectively. We make no assumptions
about the stylus being uniformly sampled in space or time. We as-
sume that a pressure of p; = 0 indicates the stylus is not in contact
with the screen.

3.1 Stroke resampling

In this section we discuss several methods for stroke resampling.
That is, computing alternate sets of stroke samples similar to ® that
may have additional properties, while still accurately representing
the original motion of the stylus. Many handwriting recognition
approaches have either resampled strokes at uniform distance or
temporal intervals. We represent samples taken at regular distance
intervals using ®? = {4%,...,¢%} where the sample magnitude
r; is constant for all samples. An illustration of uniform distance
sampling is shown in Figure 2. Notice uniform distance sampling
needs to be fine-grained in order to capture writing details.

While uniform distance or temporal sampling may be adequate for
handwriting recognition, for stroke refinement we would like stroke
samples to possess two additional properties. First, we want a con-
cise representation to reduce memory requirements. Second, for
two sequences of stroke samples representing different instances of
the same written word or shape, samples in the same position in
the sequence should roughly correspond to the same position in the
written word or shape. As we demonstrate in following sections,
having stroke samples aligned in this manner allows for their effi-
cient matching.

To accomplish both of these goals, we adapt a curvature-based ap-
proach to resampling [Whitney 1937; Mokhtarian and Mackworth
1992; Dudek and Tsotsos 1997]. We compute a stroke represen-
tation ®°¢ = {41, ..., ¢, } with the same parameterization as P,
ie. ¢f = {xs,ys,pi}. Instead of sampling at uniform distances,
we sample based on the amount of curvature. That is, we increase
the sampling density in areas of high curvature and reduce it in ar-
eas of low curvature. For instance a straight line with no curvature
may be represented by a single sample, where a circle with high
curvature will need many samples. We sequentially resample the
strokes by mapping each of the raw samples ¢; to a sample ¢; in
the curvature-based representation. The mapping is computed us-

ing j = | 2], where

o DB
2; = zi—1 + min(1, . ). @)
Ag € [0, 7] is the absolute difference between orientations ;1
and 6; from samples ¢;_1 and ¢;. The value of « controls the
density of sampling. Specifically for the case of drawing a cir-
cle, o samples will be generated. We found @ = 24 to pro-
duce minimum visual artifacts, while still producing a concise sam-
pling. The value of z; is incremented by at most 1 to avoid en-
tries in ®“ with zero valued magnitudes. To account for errors
introduced by the discretization of the stylus position, /3; reduces
the increase in z if the stroke magnitude r; is currently small,

;= max(0, min(1,7; — v/2)). Given j = |2;], the raw stroke
sample ¢; = {xi, i, p:} is added to ¢ = {x;,y;,p;} to create a
new sample {xi + x;, yi + y;, (ri * pi + 75 x p;)/(ri +75)}. To
avoid the mixing of stylus inputs that are touching and not touching
the screen, if a change in surface contact is detected the value of
z; is incremented by one. Finally while the stylus is not in contact
with the screen, z; is not incremented.

In Figure 2, we show an example of letters written by a user. Notice
that the curvature-based resampling requires fewer samples and the
stroke samples are better aligned than when using uniform distance
resampling. Next, we describe how we group the stroke samples
®° into tokens for handwriting beautification.

3.2 Refining strokes

In this section, we describe how a set of stroke samples are refined.
When a user writes they generate a large set of stroke samples,
denoted ® (for the rest of the paper we assume a curvature-based
sampling and drop the superscript c.) From & we create overlap-
ping fixed length sequences of stroke samples called rokens, Figure
1. Each token contains n stroke samples. A token 7} represents
the stroke samples from ¢; t0 ¢itn—1, Ts = {Pi,- -, Pitn_1}.
For notational convenience, we refer to the jth sample in 7; as
ti,; = ¢i+;. Atoken is created for every ¢, resulting in each sample
¢; belonging to n tokens.

Choosing the correct length n for the tokens is a critical decision.
We found that sequences of stroke samples spanning two or three
characters provides enough information to localize similarly writ-
ten tokens, while still generalizing across multiple words. That is, a
single letter would not be sufficient, since how a user writes a letter
is generally dependent on the one or two letters proceeding it. If
larger windows are used that cover entire words or multiple words,
the likelihood of finding matching tokens would decrease greatly,
since words such as “mountain” rarely occur. However, its sub-
parts such as “oun” or “ain” do commonly occur. We use n = 31,
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Figure 3: Illustration of the fine alignment of two tokens and the
creation of a descriptor. (top) The stroke samples’ magnitude and
orientation for each token are illustrated in grey and the pressure in
green. The cost matrix (8 is shown to the left with the minimum cost
path on the right in red. (bottom) The stroke samples are shown
ordered temporally from left to right (left). The vertical dimension
is their orientation and the darkness indicates their magnitude. The
pressure of each stroke sample is shown in green. The descriptor d;
used for coarse matching splits the magnitudes into pen down and
pen up samples (right).

which roughly corresponds to two or three characters when writ-
ing text as shown in Figure 1. It is worth noting that our token
representation models both strokes (pen down) and the spacing be-
tween strokes (pen up), unlike previous approaches [Lu et al. 2012]
that only beautify the strokes but not the spacing between strokes.
In the following sections, we use normalized stroke magnitudes,
75 = ri/Ni, Ui = yi/m and &; = x;/n;, to remove scale varia-
tion between tokens drawn by the user. 7); is a Gaussian weighted
running average of the visible stroke magnitudes in ®.

Our approach to stroke beautification relies on first finding sets of
similar tokens, followed by averaging them to reduce variation in
the user’s handwriting. We hold off on discussing our approach
for automatically localizing similar tokens to Section 3.3. In this
section we assume similar tokens have been found and we de-
scribe our two stage process for combining similar tokens. First,
we finely align the stroke samples in the tokens. When using the
curvature-based representation the strokes are coarsely aligned, but
small amounts of drift may result from subtle differences in how the
tokens are drawn or discretized. Second, we compute our refined
token by averaging the aligned stroke sets.

Fine-scale alignment We use an efficient dynamic programming
technique for fine-scale alignment, similar to approaches that have
been used for stereo vision [Belhumeur 1996] and for handwriting
recognition [Bahlmann and Burkhardt 2004; Jain and Namboodiri
2003]. Let us assume we have two tokens 7; and T that correspond
to the same shape or letters. First, we compute an n X n matrix of
match costs 5. The match cost i ; measures the similarity of two
stroke samples ;. and ¢;; with a lower score indicating a better
match. We compute an alignment by finding the least cost path from
B1,1 to Bn » using three types of moves {(0, 1), (1,0), (1,1)}. A
move to index (k, [) has cost Bx,; + &, where & is used to favor di-
agonal moves. Specifically, £ = 0 for a (1,1) move, and £ = 0.2
otherwise. The globally optimal path corresponding to the mapping

of stroke samples from 7; to T); can be found using dynamic pro-
gramming with forward and backward passes in O(n?) time. An
example with the computed optimal path is shown in Figure 3.

The match cost Sj,; is found using a linear combination of three
features,
B = Ar + Ag + 6p, 2)

computed from ¢; 5, and ¢;,;. Ay is the absolute difference between
7 and 7. Ag is the absolute angular distance between 6, and 6;.
Jp measures whether both strokes have consistent visibility. That
is,0p, = lif pr =0and p; = 0,0rpx, > Oand p; > 0,and 6, =0
otherwise.

Merging stroke sets Once two or more tokens are aligned, we
can merge them by averaging the stroke samples. For two stroke
samples ¢, and ¢, their average is { (£ +21)/2, (Jx+41) /2, (Fr*
pr + 71 % pi1)/(Px + 71)}. In Figure 1, we show several examples
of rendered tokens after merging. Notice the improvement in the
quality of the token, while still maintaining the writing style of the
user.

3.3 Finding similar tokens

In the previous section, we described how we combine matching to-
kens to compute a refined token. In this section we describe how we
find corresponding tokens that may be merged for token refinement
in real-time. We accomplish this using a two staged approach. First,
a coarse search is performed on sets of clustered tokens. Second,
each cluster found during the coarse search is verified and assigned
a confidence weighting. The final result is found using a weight
average of the clusters’ means and the user’s written token, Section
3.2. We begin by discussing how we cluster tokens.

Token clustering Using the stroke samples ¢ generated by the
user, we cluster tokens 7; for all <. For clustering, a distance met-
ric needs to be defined between the tokens representing the cluster
means and the tokens written by the user. We could use a simple
distance measure such as that used by Equation (2), but the stroke
samples would need to be finely aligned, which would be computa-
tionally prohibitive. Instead, we use an L? distance between token
descriptors that blurs the values temporally to provide robustness to
small temporal shifts.

Our descriptor d; linearly splits the stroke sample magnitudes 7
into histograms based on their orientation 6, and applies Gaussian
blur along the temporal dimension, Figure 3. Two histograms are
created corresponding to strokes when the stylus is in contact with
the screen (pen down) and when it is not (pen up). Since changes
in small strokes are in many cases as visually salient as changes
in large strokes, we use the logarithm of the blurred magnitudes to
equalize changes across scale. Finally, the descriptor’s values are
weighted by a temporally centered Gaussian.

Clustering is performed using an online approach in which a to-
ken is merged with a cluster if its distance is below a thresh-
old 7, otherwise a new cluster is created. For a matching cluster
c;, we merge the token 7; with the cluster’s mean token ¥; =
{¥j0,..,¥jn-1}, where ¥; is the kth stroke sample in ¥;.
Merging is performed using the same technique described in Sec-
tion 3.2 using fine-alignment and averaging. A new cluster descrip-
tor is computed given the updated mean token.

Coarse search Given the most recently drawn token 7; by the
user, we compute a descriptor d; and find its L? distance to the de-
scriptors of the clusters’ token means. As we describe later, in prac-
tice we use temporal prediction to help reduce the computational
cost of this step. If a cluster is within a distance 7, 7, > 7, of the
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Figure 4: An example of a bad and good match between tokens.
The descriptors d; are very similar for a cursive “a” and “ee
However, if we perform a raster rendering of both tokens and blur
them, their difference is large. In contrast, a correct match results
in a smaller difference between the blurred raster renderings.

cluster mean, the cluster is added to a list of potential matches, m;.
We use a threshold slightly greater than 7 to obtain a larger set of
potential candidates for later verification. In practice, the average
number of potential candidates is typically between 4 and 12 out of
a potential of 1,000’s of clusters.

Token verification For verification, we compute whether a writ-
ten token 7; and a cluster mean W ; are indeed similar. A match con-
fidence score \; ; is found using a complementary token descriptor
to d;. Our previous token descriptor d; encodes online temporal
information based on the order in which the stroke samples were
drawn. However, two descriptors d; and d; might be quite simi-
lar but the tokens may produce visually different renderings. For
instance, Figure 4 shows an example of two tokens that are writ-
ten using similar stroke orderings, but a slight change in the stroke
sample angles changes the visual appearance from an “a” to “ee”
To account for this phenomenon, we verify matching strokes usmg
a descriptor based on how the tokens are actually rendered.

We compute our confidence )\; ; in a match between 7; and ¥ us-
ing a low-resolution rendering of the tokens, Figure 4. The intensity
of the rendered strokes are weighted by their temporal distance to
the center of the token. We compute the L? distance between the
renderings after applying a small amount of blur. The confidence
score is comguted using a normal distribution on the L? distance.
Before the L~ distance is computed, both of the rendered tokens are
spatially centered.

Refining stroke samples Since we create tokens from overlap-
ping windows of stroke samples, a stroke sample ¢; belongs to n
different tokens, i.e. T;_(,_1) to T;. Each of these tokens T); with
J € [t — (n—1),4] has its own set of candidate cluster matches m;
with corresponding confidence values \; x, k& € m;. For the cluster
mean ¥y, the sample 95, € ¥y with [ = ¢ — j will contribute to
the refinement of stroke sample ¢;. The weight w; ;) assigned to
sample ¥ ; is computed using,

> > RN g o), A3)

jE[i—(n—1),i] kEm;

Wijk =

where A is the normal distribution with mean n/2 and standard
deviation 0 = n/6. The use of a Gaussian weighting ensures a
smooth transition between the contribution of various clusters in
the refinement. Using a weighted average, the refined stroke sample

¢i = {&i,7i, P} is computed using
& + Z_je[i—(n—l),i] ZkEmj Wijk Sk

1+ Zje[i—(n—l),i] ZkEmj WijkSk

xTr; =

“

and similarly for ¢;. s provides higher weight to larger clusters,
and is equal to the square root of the cluster’s size. The pressure p;
is computed similarly.

3.4 Temporal cluster prediction

As described above, when refining strokes we find the nearest clus-
ter to the currently drawn token. Done naively, we would need to
compare the current token to every cluster mean. Since the number
of cluster means may range in the 10, 000’s, this can be compu-
tationally expensive. To improve performance, we use temporal
information to predict which clusters are likely to occur next.

Our task is to find the closest clusters to a written token 7;. When
performing online stroke refinement, we assume that the closest
cluster c¢; to 131 has already been found. Since our tokens are cre-
ated using a sliding window, 7; and T;_; have n — 1 overlapping,
but shifted stroke samples. Similarly, we may predict the clusters
that match 7; by finding clusters means that match the mean ¥
of cluster c; shifted by one sample. When a new cluster is added,
we find a set of likely adjacent clusters by shifting its descriptor
temporally by one stroke sample and comparing it to other clus-
ters. Any cluster whose mean is less than a distance of 74, 7, > T,
is then added to a list of adjacent clusters. Thus, when searching
for possible matches to 7;, we only look at clusters predicted by
¢;. In practice we find this approach greatly reduces the number of
clusters that need to be compared against from thousands to 40-60.

The remaining computationally expensive process is adding a new
cluster, since we would need to compare the new cluster mean to
all of the other cluster means to find a set of adjacent clusters. To
reduce computation, we use a random sampling approach to finding
adjacent clusters. Given a new cluster ¢, we randomly select 300
other clusters. If a cluster mean ¥; is close to Wy, we search all
of ¢;’s adjacent clusters to find adjacent clusters for c. In practice,
this reduces the number of mean comparisons to 300 to 500 when
adding new clusters with minimal loss in accuracy.

4 Online rendering

In the previous section, we described how we compute a refined set
of stroke samples & from the original samples . We now describe
our method for rendering the refined samples to the user. When
we compute the refined sample éi, we need samples from ¢ that
occur after CZh to find similar tokens, Section 3.3. Thus, there is
a temporal lag between when a user writes a stroke sample and
when its refined version is computed. To account for this, we use
a method that slowly warps the stroke samples ® to ® as the user
writes. Specifically, we linearly blend between ¢ and & over 30
stroke samples. The result may be viewed in the supplementary
video.

When rendering the refined strokes, we desire them to occupy the
same rough spatial position and scale as the original strokes. Be-
fore rendering, the magnitudes of the refined stroke samples are
multiplied by 7, to return them to their original scale. Due to the
accumulation of small differences in the stroke samples it is possi-
ble for the refined stroke samples to drift from the original stroke
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Figure 5: Examples of the handwriting user study. (Top) 13 exam-
ples of the different subjects writing ”dandelions”. Notice the wide
variation in writing styles. (Bottom) Examples of text beautifica-
tion. The top sentence is the original and beautification has been
applied to the bottom sentence.

sample absolute positions. To account for this we compute the av-
erage position of the original strokes and the refined strokes, and
shift the refined strokes by their difference. This average ensures
the low-frequency placement of the strokes are the same without
removing the higher-frequency and visually salient changes of the
refined strokes.

5 Results

In this section, we discuss results on improving handwritten text,
shapes and doodles. We begin by showing quantitative results of a
user study in which we collected a wide variety of writing samples.
Next, using a larger database of writings, we analyse the memory
and computational performance of our approach. Finally, we show
some qualitative results.

In all of our experiments we used the following parameter settings,
which were experimentally found to produce accurate results while
maintaining computational efficiency. For the descriptor d the mag-
nitudes are split into § orientation bins, and temporally blurred with
a Gaussian, 0 = 1.5 samples. The descriptor is weighted tempo-
rally with a Gaussian, ¢ = 15 samples. The resulting descriptor
has n x 16 values, Figure 3.

For verifying matching tokens, we compute the pixel difference be-
tween their renderings, Figure 4. Before computing the difference
we Gaussian blur the renderings with a o = 1.5 pixels. The inten-
sity of the rendered strokes is weighting using a temporally centered
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Figure 6: The results of the handwriting user study. (Left) Chart
showing users preference for the original strokes and beautified
strokes. 72% of the refined or beautified renderings where preferred
over the original stroke renderings, where 17% of the original ren-
derings were preferred. For each of the 13 handwriting examples, a
majority of subjects preferred the refined strokes. (Right) Example
failure cases from the user study.

Gaussian with 0 = 5 samples. The confidence score is computed
using a normal distribution on the L? distance with o = 0.25.

The values of the cluster merging threshold 7 and token size n are
critical parameters. 7 should be chosen carefully to ensure tokens
representing different letters or shapes are not merged together,
while still merging tokens as often as possible to maintain compu-
tationally efficiency. We used a value of 7 = 1.5 and found values
ranging from 7 = 1.4 to 1.8 produced reasonable results. We use
values of 7, = 1.17 for finding sets of tokens for verification, and
7o = 1.27 for computing cluster adjacency sets.

5.1 Handwriting user study

We designed a user study to see if our approach to handwriting
beautification would work across different writing styles, including
both printed and cursive text. We asked 13 subjects to write 20
sentences. The sentences where chosen to contain similar words,
so that similar tokens could be found. The subjects used a Wacom
Cinteq 24HD pen display. The subjects’ strokes were rendered in
a pencil style on ruled paper. Figure 5 shows examples from the
13 subjects. Notice the large amount of variation in their writing
styles. We applied our online approach to handwriting beautifica-
tion to each of the examples. We then asked 8 of the original 13 sub-
jects to judge whether the original unmodified strokes or the refined
strokes produced by our approach was “easier to read and more ap-
pealing to look at.” The last 6 out of 20 sentences written by the
13 subjects were shown for comparison. The subjects had to pick
between example “A”, “B” or “Neither”. The original and refined
strokes were randomly assigned to “A” and “B” and the ordering
of the examples was randomized. For each of the 13 handwriting
examples, a majority of subjects preferred the refined strokes. As
shown in Figure 6, the subjects liked the refined strokes in 72% of
the examples, they didn’t have a preference in 11% of the exam-
ples, and they favored the original strokes in 17% of the examples.
Given the relatively small number of sentences written by the sub-
jects, it is impressive that even when refining strokes with a small
number of potentially matching tokens an improvement was seen.
Except for a few words such as “the”, most words only occurred
4-6 times. Examples of our text beautification and failure cases are
shown in Figures 5 and 6.

5.2 Performance evaluation

In this section, we analyse both the memory and computational per-
formance of our approach. Specifically, we study how the size of
the database and number of clusters grows as a user writes more
strokes. To study these questions, we asked a subject to write
the first 2,000 words of “Crime and Punishment” by Fyodor Dos-



toyevsky using 9 separate sessions. This resulted in over 75,000
stroke samples.

We begin by looking at the number of clusters created. After 75,000
samples our online clustering algorithm finds over 15,000 clusters.
However, a vast majority of these clusters are created but never
used for stroke refinement, since they are never matched to any
other token. We measured the percentage of weights w;;, in Equa-
tion (4) that contribute to stroke refinement in the top k clusters,
k = {100, 1000, 5000, 10000}. We found that after 75,000 stroke
samples 97% of the contribution to stroke refinement is made by
the top 5,000 clusters, while 31%, 69% and 100% is made by the
top 100, 1,000 and 10,000 clusters respectively. Given this finding,
we periodically remove clusters when adding new strokes. Specif-
ically we limited the number of clusters to 6,000. Another way to
judge how many clusters should be used is to look at the number
of letter triplets possible in the English language. By this measure
we should have 26 x 26 x 26 = 17, 576 clusters. Obviously, many
of these triplets will never be used, some may be written in mul-
tiple ways, and many tokens may not correspond to written text.
However, having between 5,000 and 10,000 clusters appears ade-
quate for capturing most of the variation in a user’s writings and
drawings.

Using 6,000 clusters our approach can process new strokes at a rate
of 300Hz to 500Hz. This corresponds to roughly 500 words per
minute, which is at least an order of magnitude faster than a person
can write. Experiments were run on an Intel i5 2.53GHz CPU with
4GB RAM. The implementation is written for efficiency, but is not
highly optimized, more specifically no hardware acceleration was
used. The memory requirements for storing the database of clusters
and their descriptors is less than 20MB.

5.3 Qualitative results

In Figure 1, we show several qualitative results of our approach be-
fore and after stroke refinement. The figure shows words, shapes,
and doodles, cut from a larger document. Notice how the beautified
results across a wide range of different input styles are more con-
sistent, and for words easier to read. To illustrate how our online
approach progressively improves written tokens, we show several
examples in Figure 7. Notice how initially the database is empty
so no stroke refinement is performed. However, as the same word
or shape is written multiple times the algorithm finds matching to-
kens and the strokes are refined. For a better visualization of the
differences and more results, please see the supplementary video.

6 Discussion

Currently, our approach only matches sets of stroke samples within
individual tokens. In future work, longer range and more complex
interactions could be explored. For instance, spelling correction
may automatically be performed if we took advantage of relations
between multiple tokens. While we developed our efficient search
algorithm for beautification, the approach may be used for other
purposes as well. For instance a user may search their notes us-
ing stylus input. The clusters may also be useful if handwriting
recognition was desired, since recognition could be performed on
the clusters instead of individual tokens.

One area that we did not explore in this paper is whether a stroke
database created by one user may be useful for beautifying the writ-
ten strokes of another user. Currently, our approach has a “cold
start” problem, in that we cannot beautify a person’s strokes until
we have a database large enough to find matching tokens. However
as shown in Figure 7, only a few matching tokens are needed to
start seeing improvement. One possible failure case is the system

may not be able to reliably match hastily written strokes by a user
to those more careful written if the differences are too large.

In this paper we propose a general purpose method for handwrit-
ing beautification. This includes numerous forms of written text
and shapes. This is enabled by the insight that the average of mul-
tiple matching tokens is in general more appealing than individ-
ual instances. This holds true not just for text, but for shapes and
other drawings. As a result, our approach does not need prede-
fined shapes [Pavlidis and Van Wyk 1985; Igarashi et al. 1997; Arvo
and Novins 2000], handwriting recognition [Plamondon and Srihari
2000] or other parsers [Zanibbi et al. 2001; Simard et al. 2005]. We
demonstrated the effectiveness of our approach with a user study
showing beautification across a diverse collection of handwriting
styles and by showing numerous qualitative examples.
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