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Abstract

Infants and adults are adept at inferring agents’ goals fromin-
complete or ambiguous sequences of behavior. We propose
a framework for goal inference based oninverse planning,
in which observers invert a probabilistic generative modelof
goal-dependent plans to infer agents’ goals. The inverse plan-
ning framework encompasses many specific models and rep-
resentations; we present several specific models and test them
in two behavioral experiments on online and retrospective goal
inference.
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Introduction
A woman is walking down the street, when suddenly she
pauses, turns, and begins running in the opposite direction.
Why? Is she crazy? Did she complete an errand unknown to
us (perhaps dropping off a letter in a mailbox) and rush off to
her next goal? Or did she change her mind about where she
was going? These inferences derive from attributing goals to
the woman and using them to explain her behavior.

Adults are experts at inferring agents’ goals from obser-
vations of behavior. Often these observations are ambiguous
or incomplete, yet we confidently make goal inferences from
such data many times each day. Developmental psychologists
have shown that infants also perform simple forms of goal
inference. In experiments using live-action stimuli, Wood-
ward found evidence that 6-month old infants attribute goals
to human actors, and look longer when subsequent behav-
ior is inconsistent with the old goal (1998). Meltzoff (1995)
showed that 18-month olds imitate intended acts of human
actors rather than accidental ones, and Csibra and colleagues
found evidence that infants infer goals from incomplete tra-
jectories of moving objects in simple two-dimensional anima-
tions (Csibra, Biró, Koós, & Gergely, 2003), both suggesting
that children infer goals even from incomplete actions.

The apparent ease of goal inference masks a sophisticated
probabilistic induction. There are typically many goals logi-
cally consistent with an agent’s actions in a particular context,
and the apparent complexity of others’ actions invokes a con-
fusing array of explanations, yet observers’ inductive leaps to
likely goals occur effortlessly and accurately. How is thisfeat
of induction possible?

A possible solution, proposed by several philosophers and
psychologists, is that these inferences are enabled by an intu-
itive theory of agency that embodies theprinciple of rational-
ity: the assumption that rational agents tend to achieve their
desires as optimally as possible, given their beliefs (Dennett,
1987; Gergely, Nádasdy, Csibra, & Biró, 1995). However,

many authors (e.g. Nichols and Stich (2003); Baker, Tenen-
baum, and Saxe (2006)) have argued that the qualitative de-
scriptions of the principle of rationality that have been pro-
posed are insufficient to account for the complexities of hu-
man goal inference. Further, the qualitative predictions of
noncomputational models lack the resolution for fine-grained
comparison with people’s judgments.

Here, we propose a computational version of this approach
to goal inference, in terms of inverse probabilistic planning. It
is often said that “vision is inverse graphics”: computational
models of visual perception – particularly in the Bayesian tra-
dition – often posit a causal physical process of how images
are formed from scenes (i.e. “graphics”), and this process
must be inverted in perceiving scene structure from images.
By analogy, in inverse planning, planning is the process by
which intentions cause behavior, and the observer infers an
agent’s intentions, given observations of an agent’s behav-
ior, by inverting a model of the agent’s planning process.
Like much work in computer vision, the inverse planning
framework provides a rational analysis (Anderson, 1990) of
goal inference. We hypothesize that people’s intuitive the-
ory of goal-dependent planning approximates scientific mod-
els of human decision making proposed by economists and
psychologists, and that bottom-up information from inverting
this theory, given observations of behavior, is integratedwith
top-down prior knowledge of the space of goals to allow ra-
tional Bayesian inference of goals from behavior.

The inverse planning framework includes many specific
models that differ in the complexity they assign to the be-
liefs and desires of agents. Prior knowledge of the space of
other agents’ goals is necessary for induction, and in this pa-
per, we will present and test several models that differ in their
representations of goal structure. Our experimental paradigm
tests each model with a wide range of action trajectories in a
simple space for which our models make fine-grained predic-
tions. (Our stimuli resemble those of Gergely et al. (1995)).
Some of these stimuli display direct paths to salient goals,and
have simple intentional interpretations. Other stimuli display
more complex behaviors, which may not have simple inten-
tional interpretations. These sorts of trajectories allowus to
distinguish between alternative models that differ in their rep-
resentation of complex goal structure. By varying the length
of the trajectories, we measure how subjects’ goal inferences
change over time, and by eliciting both online and retrospec-
tive inferences, we measure how subjects integrate informa-
tion over time.

To illustrate the space of models we present, consider the
introductory example. Each of the three queries raised about
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the woman’s goals correspond to a particular representation
of goal structure that we test. The first model (M1) assumes
a single invariant goal across a trajectory, and explains any
deviation from the optimal behavior as noise, or bounded ra-
tionality. The second model (M2) assumes that agents can
have subgoals along the way to their final goal, and is able
to explain indirect paths. The third model (M3) assumes that
agents’ goals can change over time, and can also explain in-
direct paths or changes in direction.

The plan for the paper is as follows. We first describe
our framework for inverse planning, and present three spe-
cific inverse planning models for goal inference. We then
describe two new behavioral experiments designed to distin-
guish between our specific inverse planning models, and pro-
vide quantitative results of our model for each experiment.

Inverse planning framework

Although the definition of rationality has been left informal
in prior work on intentional reasoning, formal models of ra-
tionality have been well developed in the field of decision
theory. Markov Decision Problems (MDPs) are the standard
formalism for sequential decision making, or planning, un-
der uncertainty. Solving an MDP entails finding an optimal
policy, or rule of action, that leads to the maximum expected
discounted reward, given the environment. A rational agent
is one that follows an optimal policy.

At its core, the inverse planning framework assumes that
human observers represent other agents as rational planners
solving MDPs. The causal process by which goals cause be-
havior is generated by probabilistic planning in MDPs with
goal-dependent reward functions. Using Bayesian inference,
this causal process can be integrated with prior knowledge of
likely goal structures to yield a probability distributionover
agents’ goals given their behavior. Our framework builds on
previous work by Baker et al. (2006) and Verma and Rao
(2006), who propose similar inverse planning frameworks.
Here we consider a wider range of hypothesis spaces for goal
structures, and present the first quantitative tests of thisframe-
work as an account of human goal inference.

Let S be the set of agent states, letW be the set of environ-
mental states, letG be the set of goals, and letA be the set of
actions. Letst ∈ S be the agent’s state at timet, let w ∈W be
the world state (assumed constant across trials), letg ∈ G be
the agent’s goal, and letat ∈ A be the agent’s action at timet.
Let P(st+1|st ,at ,w) be the state transition distribution, which
specifies the probability of of moving to statest+1 from state
st , as a result of actionat , in world w. In general, the dynam-
ics of state transitions depend on the environment, but for the
stimuli considered in this paper, state transitions are assumed
to yield the desired outcome deterministically.

Let Cg,w(a,s) be the cost of taking actiona in states for
an agent with goalg in world w. In general, cost functions
may differ between agents and environments. For our 2D
motion scenarios, action costs are assumed to be proportional
to the negative length of the resulting movement (staying still

incurs a cost as well). The goal state is absorbing and cost-
free, meaning that the agent incurs no cost once it reaches the
goal and stays there. Thus, rational agents will try to reach
the goal state as quickly as possible.

The value functionV π
g,w(s) is defined as the infinite-horizon

expected cost to the agent of executing policyπ starting from
states (with no discounting):

V π
g,w(s) = Eπ

[

∞

∑
t=1

∑
at

Pπ(at |st ,g,w)C(at ,st)

∣

∣

∣

∣

∣

s1 = s

]

. (1)

Qπ
g,w(st ,at) = ∑st+1

P(st+1|st ,at)V π
g,w(st+1) + Cg,w(at ,st) is

the state-action value function, which defines the infinite-
horizon expected cost of taking actionat from statest , with
goal g, in world w, and executing policyπ afterwards. The
agent’s probability distribution over actions associatedwith
policy π is defined asPπ(at |st ,g,w) ∝ exp

(

βQπ
g,w(st ,at)

)

,
sometimes called aBoltzmann policy. The optimal Boltz-
mann policy and the value function of this policy can be com-
puted efficiently using value iteration (Bertsekas, 2001).This
policy embodies a “soft” principle of rationality, where the
parameterβ controls how likely the agent is to deviate from
the rational path for unexplained reasons. Theβ parameter
plays an important role in each of our models, weighing ran-
domness against high-level goal structure, and we vary its
value for each of our models to determine its effect on pre-
diction in our experiments.

Next, we describe three candidate representations for peo-
ple’s prior knowledge about goals in our framework, roughly
corresponding to the three kinds of explanations we offered
for the woman’s anomalous behavior in our introductory ex-
ample. These candidate models, denoted M1(β), M2(β,κ),
and M3(β,γ), are formalized in the subsections below.

Model 1: single underlying goal
Our first candidate model assumes that the agent has one un-
derlying goal that it pursues across all timesteps. We denote
this model M1(β). Unlike M2 and M3, this model must ex-
plain all deviations from the shortest path to the goal in terms
of unlikely choices by the agent, governed by the parameter
β. Given a state sequence of lengthT , the distribution over
the agent’s goal in this model is obtained using Bayes’ rule:

P(g|s1:T ,w) ∝ P(s1:T |g,w)P(g|w), (2)

where P(s1:T |g,w) = ∏T−1
t=1 P(st+1|st ,g,w). The probabil-

ity of the next statest+1, given the current statest , the
goal g, and the environmentw, is computed by marginal-
izing over actions, which are only partially observable
though their effect on the agent’s state:P(st+1|st ,g,w) =

∑at∈Ast
P(st+1|st ,at ,w)Pπ(at |st ,g,w). M1(β) is a special case

of both M2(β,κ) and M3(β,γ), with κ andγ equal to 0.

Model 2: complex goals
The next model we consider is based on the complex goal
model of Baker et al. (2006). We denote this model M2(β,κ).
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In this model, with prior probabilityκ, the agent picks a com-
plex goal, which includes the constraint that the agent must
pass through a particular “via-point” on the way to its end
goal. With prior probability 1−κ the agent picks a simple
goal, which is just a single goal point, as in M1. Given the
agent’s type of goal (simple or complex), the distribution over
goals within each type is assumed to be uniform. Inferences
about an agent’s end goal are obtained by marginalizing over
goal types, and within the complex goal type, marginalizing
over possible via-points.

The evidence that people represent and reason about com-
plex goals (Baker et al., 2006) has lead us to consider M2 as a
hypothesis for explaining people’s goal inferences. However,
in the stimuli we consider, there may be less evidence for
complex goals than in the experiments of Baker et al. (2006).
Thus, we vary the parameterκ to assess the effect of greater a
priori probability of complex goals. The next model we con-
sider also represents sequences of goals, but in a way that is
more generic, and only depends on the agent’s tendency to
“change its mind”.

Model 3: changing goals
Our final model assumes that agents’ goals can change over
time for reasons unknown to observers. This model takes the
form of a Dynamic Bayes net, which we denote as M3(β,γ),
whereγ is the probability of changing goals. (In this section,
we omit the conditional dependence of probability distribu-
tions onw for readability). Letk be the number of goals, and
let P(g1) be the prior over initial goals at timet=1. P(gt+1|gt)
is the conditional distribution over changing to goalgt+1 at
time t+1 given the goalgt at timet:

P(gt+1=i|gt= j) =

{

1− γ if i = j

γ/(k−1) otherwise.
(3)

Whenγ = 0, this model reduces to M1. Whenγ = (k−1)/k,
the conditional distributionP(gt+1|gt) is uniform; in this case
the model is equivalent to choosing a new goal at random
at each time step. Intermediate values ofγ between 0 and
(k−1)/k interpolate between these extremes.

To compute the posterior distribution over goals at timet,
given a state sequences1:t+1, we recursively define thefor-
ward distribution:

P(gt |s1:t+1) ∝ P(st+1|gt ,st ) ∑
gt−1

P(gt |gt−1)P(gt−1|s1:t), (4)

where the recursion is initialized withP(g1). This allows us
to model subjects’ online inferences in Experiment 1.

To compute the marginal probability of a goal at timet
given s1:T , t<T , we use a variant of the forward-backward
algorithm. The forward distribution is defined by Eq. 4 above.
Thebackward distribution is recursively defined by:

P(st+2:T |gt ,s1:t+1) =

∑
gt+1

P(st+2|gt+1,st+1)P(st+3:T |gt+1,st+2)P(gt+1|gt). (5)

The marginal probability of goalgt given the state sequence
s1:T is the product of the forward and backward messages:

P(gt |s1:T ) ∝ P(gt |s1:t+1)P(st+2:T |gt ,s1:t+1). (6)

This distribution allows us to infer what the agent’s goal was
at time t, given its past movements from 1:t+1, and future
movements from timet+1:T , allowing us to model subjects’
retrospective inferences in Experiment 2. The parameterγ
plays a key role in how information from the past and future
is integrated into the distribution over current goals. When
γ = (k−1)/k, past and future movements carry no informa-
tion about the current goal. Whenγ = 0, changing goals is
prohibited, and future information constrains the probability
of all past goals to be equal toP(gT−1|s1:T ). For each exper-
iment, we tested the range of predictions of M3 across this
parameter space.

Experiments
As candidate models for our experiments, we tested each of
M1, M2, and M3 withβ values in{0.25,0.5,1.0,1.5,2.0,4.0}.
For M2 and M3, which each have an additional free parame-
ter, we tested a range of values for these parameters as well.
These values are listed in Tables 1 and 2. For M2, we omit
the full range ofβ values from Tables 1 and 2 for readability.

Experiment 1
Our first experiment tested the power of our alternative mod-
els to predict people’s judgments in a task of inferring agents’
goals from observations of partial action sequences.

Participants Participants were 16 members of the MIT
community.

Materials and Procedure Subjects were told they would
watch 2D videos of intelligent aliens moving around in sim-
ple environments with visible obstacles, with goals marked
by capital letters.

There were 100 stimuli in total. An illustrative subset is
shown in Fig. 1(a). Each stimulus contained 3 goals. There
were 4 different goal configurations, and two different obsta-
cle conditions: gap and solid, for a total of 8 different envi-
ronments. There were 11 different complete paths: two paths
headed toward ‘A’, two paths headed toward ‘B’, and 7 paths
headed toward ‘C’ (to account for C’s varying location). Par-
tial segments of these paths starting from the beginning were
shown in each different environment. Because many of the
paths were initially identical, and because many of the paths
were not possible in certain environments (i.e. collided with
walls), the total number of unique stimuli was reduced to 100.

Stimuli were presented shortest lengths first in order to not
bias subjects toward particular outcomes. Stimuli of the same
length were shown in random order. After each stimulus pre-
sentation, subjects were asked to rate which goal they thought
was most likely (or if two or more were equally likely, to pick
one of the most likely). After this choice, subjects were asked
to rate the likelihood of the other goals relative to the most
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Figure 1: Experiment 1. (a) Example stimuli. Plots show all 4goal conditions and both obstacle conditions. Both ‘A’ paths are shown, one
of two ‘B’ paths is shown and 2 of 7 ‘C’ paths are shown. Dark colored numbers indicate displayed lengths. (b) Average subject ratings with
standard error bars for above stimuli. (c) Model predictions. Model predictions closely match people’s ratings. Displayed model: M3(1.5,.5).

Model
M1(β) M2(1.5,κ) M2(2.0,κ) M3(β,0.67) M3(β,0.50) M3(β,0.25) M3(β,0.10)

β r κ r κ r β r β r β r β r
0.25 0.82 0.10 0.89 0.10 0.89 0.25 0.92 0.25 0.92 0.25 0.92 0.25 0.91
0.5 0.83 0.25 0.90 0.25 0.91 0.5 0.93 0.5 0.94 0.5 0.95 0.5 0.94
1.0 0.82 0.50 0.92 0.50 0.93 1.0 0.95 1.0 0.95 1.0 0.96 1.0 0.96
1.5 0.82 0.67 0.92 0.67 0.93 1.5 0.96 1.5 0.96 1.5 0.97 1.5 0.97
2.0 0.81 0.75 0.93 0.75 0.94 2.0 0.96 2.0 0.97 2.0 0.98 2.0 0.98
4.0 0.78 0.90 0.93 0.90 0.94 4.0 0.96 4.0 0.96 4.0 0.96 4.0 0.96

Table 1: Experiment 1 results. M1, M2 and M3 were tested withβ values in{0.25,0.5,1.0,1.5,2.0,4.0}. Odd columns contain parameter
settings for the various models. Even columns containr-values of the various models’ correlations with people’s ratings. For M2 and M3,
which each have an additional free parameter, we tested a range of values for these parameters as well. We omit the full range ofβ values for
M2 for readability. The M3(β,0.67) column corresponds to the condition in which a new goal issampled at random at each time step.

likely goal, on a 9-point scale from “Equally likely”, to “Half
as likely”, to “Extremely unlikely”. Ratings were normalized
to sum to 1 for each stimulus, then averaged across all sub-
jects and renormalized to sum to 1. Example subject ratings
are plotted with standard error bars in Fig. 1(b).

Each model makes strong predictions about people’s rat-
ings in this experiment. If M1 is correct, then people should
weigh evidence from old and recent movements equally, and
react slowly to new evidence that conflicts with past evi-
dence. Conversely, M2 and M3 predict that people should
react quickly to recent movements strongly indicating a par-
ticular goal. M2 achieves this by inferring that a subgoal has
been reached, and that recent movements reflect the end goal.
M3 achieves this by inferring that the agent has changed its
goal. Example model predictions from M3(1.5,0.5) are plot-
ted in Fig. 1(c); these match subjects’ ratings very closely.

Results The results of Experiment 1 are summarized in Ta-
ble 1. All instances of M3 correlate highly with subjects’
ratings, indicating that subjects were quick to respond to ev-
idence of a new goal. Because of this, M2 also correlates
highly with people’s judgments. M1 clearly does a poorer
job of predicting people’s judgments. Fig. 3(a) shows scat-
ter plots of model predictions versus subject ratings for the
model with the highest correlation from each class. Although
the predictions of M3 correlate slightly higher with subjects’
ratings than the predictions of M2, only M1 is ruled out as a

viable model for people’s judgments in this experiment.

Experiment 2

Our second experiment sought to provide a context within
which predictions of M2 and M3 could be distinguished. We
showed subjects long trajectories and asked them to make ret-
rospective judgments about the agent’s goal at several earlier
points in the action sequence. As explained below, in cases
where the early and late stages of a trajectory are locally best
explained by different goals, only the changing goal model
(M3) predicts that people’s retrospective goal inferenceswill
vary accordingly.

Participants Participants were 16 members of the MIT
community (distinct from the first group).

Materials and Procedure The procedure of Experiment 2
was similar to that of Experiment 1, except now subjects were
told they would see an alien’s movement, and that after this
movement, an earlier point along the alien’s path would be
marked. Subjects were told they would then be asked to indi-
cate “which goal the alien had in mind” at the marked point,
in light of the entire subsequent path they observed.

There were 95 stimuli in this experiment. Stimuli were
taken from Experiment 1 as follows. Each path from each en-
vironment was used. However, only paths of maximal length
were displayed. The marked points were taken to be evenly
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Figure 2: Experiment 2. (a) Example stimuli. Dashed line corresponds to the movement subjects saw prior to rating the likelihood of each
goal at the marked point. Black +’s correspond to test pointsin the stimuli. Compare to corresponding column of Fig. 1. (b) Subjects’ ratings:
compare to Fig. 1. (c) Model predictions. Displayed model: M3(1.5,0.5).

Model
M1(β) M2(1.5,κ) M2(2.0,κ) M3(β,0.67) M3(β,0.50) M3(β,0.25) M3(β,0.10)

β r κ r κ r β r β r β r β r
0.25 0.60 0.10 0.78 0.10 0.77 0.25 0.91 0.25 0.95 0.25 0.94 0.25 0.87
0.5 0.58 0.25 0.78 0.25 0.77 0.5 0.91 0.5 0.95 0.5 0.93 0.5 0.86
1.0 0.57 0.50 0.78 0.50 0.77 1.0 0.92 1.0 0.94 1.0 0.92 1.0 0.84
1.5 0.56 0.67 0.78 0.67 0.77 1.5 0.92 1.5 0.93 1.5 0.90 1.5 0.83
2.0 0.56 0.75 0.78 0.75 0.77 2.0 0.91 2.0 0.92 2.0 0.88 2.0 0.82
4.0 0.55 0.90 0.78 0.90 0.77 4.0 0.90 4.0 0.90 4.0 0.86 4.0 0.78

Table 2: Experiment 2 results. M1, M2 and M3 were tested withβ values in{0.25,0.5,1.0,1.5,2.0,4.0}. Odd columns contain parameter
settings for the various models. Even columns containr-values of the various models’ correlations with people’s ratings. For M2 and M3,
which each have an additional free parameter, we tested a range of values for these parameters as well. We omit the full range ofβ values for
M2 for readability. The M3(β,0.67) column corresponds to the condition in which a new goal issampled at random at each time step.

spaced points corresponding to shorter path lengths previ-
ously displayed in Experiment 1. Thus, each rating in Exper-
iment 2 had a corresponding rating in Experiment 1. Fig. 2(a)
shows illustrative stimuli that directly correspond to thestim-
uli in Fig. 1(a).

In this experiment, M2 and M3 make opposite predictions.
M2 (and M1) predict that the strong evidence provided for
particular end goals by the long paths shown in Experiment 2
will have a large effect on people’s inferences about agents’
goals earlier in their paths. This is because both M1 and M2
assume the agent’s goal (simple or complex) to be constant
throughout its path. Thus, if an agent gives a strong indica-
tion of pursuing a particular goal at the end of its path, these
models assume that it must have been headed for this goal all
along. M3, however, uses Eq. 6 to compute the probability of
the agent’s goal at the marked point. As discussed earlier, the
parameterγ controls how much information the distribution
over goals in the future provides about goals in the past. M3
predicts that people’s prior assumptions about the likelihood
of changing goals will have a large effect on their judgments.
If γ is close to(k − 1)/k, M3 predicts that people’s ratings
in Experiment 2 will correlate highly with the corresponding
ratings from Experiment 1.

Results The results of Experiment 2 are summarized in Ta-
ble 2. M1 continues to perform poorly. Now, however, M2 is
also a relatively poor predictor of people’s judgments, while

M3 continues to correlate most highly with people’s judg-
ments. Interestingly, as predicted earlier, the correlation of
people’s ratings in Experiment 2 with people’s ratings from
the corresponding stimuli from Experiment 1 was 0.89; fairly
high given the difference in tasks. Fig. 3(b) shows scat-
ter plots of model predictions versus subject ratings for the
model with the highest correlation in each class.

Discussion

The high correlations between our models and subjects’
predictions from Experiment 1 and Experiment 2 provide
strong quantitative evidence in support of the inverse plan-
ning framework. These results also provide support for the
goal structures of M3 as plausible representations for human
goal inference. However, the lower correlations of M2 with
subjects’ predictions from Experiment 2 do not rule out sub-
goals as a possible goal structure representation. Subgoals
could be useful in some cases, such as in our earlier work,
where we showed that people’s action predictions are well-
explained by M2 when an agent persistently pursues complex
goals (Baker et al., 2006). As mentioned previously, the stim-
uli used in the current paper provide less evidence for sub-
goals than the stimuli used in Baker et al. (2006). People’s
use of different models to explain and reason about different
data might be captured by a hierarchical Bayesian model that
incorporates both M2 and M3 as submodels, as well as many
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Figure 3: Example scatter plots of model predictions against subject ratings. Plots of model predictions use the parameter settings with the
highest correlation from each model column of Tables 1 and 2.(a) Experiment 1 results. (b) Experiment 2 results.

other submodels with different goal representations, since M2
and M3 merely scratch the surface of possible goal structures.

Although our results suggest that people explain apparent
deviations from the most direct path by inferring a change
in goals, inferring that an agent’s goal has changed does not
account for all the complexities of behavior – the parameter
β also plays an important role in generating accurate predic-
tions of subjects’ ratings in our model. Thus, people’s goal
inferences in our experiments reflect a tradeoff between ex-
plaining complex behavior in terms of unlikely deviations
from the shortest path and attributing a change in goals.

Two well-known qualitative accounts of action understand-
ing, theory-theory (Gopnik & Meltzoff, 1997) and simulation
theory (Goldman, 2006), can be seen as cases of inverse plan-
ning. On a theory-theory interpretation, inverse planningcon-
sists of inverting a theory of rational action to arrive at a set of
goals that could have generated the observed behavior, and in-
ferring individual goals based on prior knowledge of the kinds
of goals the observed agent prefers. On a simulation theory
account, goal inference is performed by inverting one’s own
planning process to narrow down the set of goals that could
have generated the observed behavior, and inferring individ-
ual goals from this set according to their desirability under
one’s own preferences.

Unlike previous proposals, our computational framework
shows precisely how to integrate top-down prior knowledge
about goals with bottom-up observations of behavior using
Bayesian inference. Similar ideas have been sketched out
qualitatively, but our inverse-planning models are the first to
quantitatively describe people’s probabilistic goal inferences,
and to explain rationally how these inductive leaps can be suc-
cessful given only sparse, incomplete observation sequences.

Conclusion
We presented a computational framework for explaining peo-
ple’s goal inferences based on inverse planning. Within
this framework, we presented three specific inverse planning
models, each using a different representation of goal struc-
ture. We tested these models with two novel experiments
designed to distinguish between the different goal represen-

tations of the models. Our experiments yielded high resolu-
tion data, which provided empirical support for the inverse
planning framework, and gave quantitative evidence for our
changing goals model as a plausible goal representation. It
will be important to test whether inverse planning will gen-
eralize to explain human goal inference outside of the lab-
oratory, but we believe that the power of the rationality as-
sumption, combined with rich representations of goal struc-
ture, can account for much of people’s everyday reasoning
about agents’ actions and goals.
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