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THE EVOLUTION OF CODING IN SIGNALING
GAMES

ABSTRACT. Signaling games with reinforcement learning have been
used to model the evolution of term languages (Lewis 1969, Conven-
tion. Cambridge, MA: Harvard University Press; Skyrms 2006, “Signals”
Presidential Address. Philosophy of Science Association for PSA). In
this article, syntactic games, extensions of David Lewis’s original sender—
receiver game, are used to illustrate how a language that exploits avail-
able syntactic structure might evolve to code for states of the world. The
evolution of a language occurs in the context of available vocabulary and
syntax—the role played by each component is compared in the context
of simple reinforcement learning.

KEY WORDS: evolution of language, evolutionary game theory, signaling
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1. LEWIS SIGNALING GAMES

Lewis (1969) introduced sender-receiver games as a way of
investigating how meaningful language might evolve from
initially random signals. A Lewis signaling game has two play-
ers: the sender and the receiver. In an n-state/n-term signal-
ing game there are n possible states of the world, n possible
terms the sender might use as signals, and n possible receiver
actions, each of which corresponds to a state of the world.
Nature chooses a state at random on each play of the game.
The sender then observes the state and sends a term to the
receiver, who cannot directly observe the state of the world.
The receiver chooses an act based on the term he receives. If
the receiver’s action matches the state of the world, then each
player is rewarded.

The sender and receiver may learn from their record of suc-
cess and failure on repeated plays of the game. Whether and
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how quickly they learn will depend on their learning strategy.
If the sender and the receiver evolve to a state where they are
more successful then chance, then they have evolved a more
or less efficient language. The efficiency of the evolved lan-
guage can be measured by the expected signal success rate
(the expected ratio of successful actions to the number of
plays) or by the mean information content of a signal (where
logy(n) bits is sufficient to specify a particular state from
among n possible states). Lewis called a system that evolves to
a maximally efficient language a signaling system. For a per-
fect signaling system in a Lewis signaling game, each state of
the world corresponds to a term in the language, and each
term corresponds to an act that matches the state of the
world; consequently, each signal leads to a successful action.
For the 2-state/2-term game, a perfect signaling system would
have a success rate of 1.0 and each signal would communicate
one bit of information.

We will begin by supposing the simulated agents use a sim-
ple urn learning strategy. Urn learning is a type of positive
reinforcement learning with a long psychological pedigree: it
models Richard Herrnstein’s (1970) matching law, where the
probability of choosing an action is proportional to the accu-
mulated rewards, which is itself a quantification of Thorn-
dike’s law of effect. Herrnstein reinforcement learning has
been used recently in game-theoretic contexts by Roth and
Erev (1995) to model experimental human data on learning in
games, by Skyrms and Pemantle (2000) to model social net-
work formation, and by Skyrms (2006) to model learning in
the context of Lewis signaling games.

In a basic 2-state/2-term Lewis signaling game with rein-
forcement learning, there are two possible states of the world
(A and B), two possible terms (0 and 1), and two possible acts
(A and B), each of which is successful if and only if the corre-
sponding state of the world obtains (see Figure 1). The sender
has an urn labeled state A and an urn labeled state B, and the
receiver has an urn labeled signal 1 and an urn labeled signal
2. The sender’s urns each begin with one ball labeled signal
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State: A B sender - 5 receiver Act: AB

Signal: 0,1

Figure 1.

1 and one ball labeled signal 2, and the receiver’s urns each
begin with one ball labeled act 4 and one ball labeled act B.

On each play of the game, the state of the world is ran-
domly determined with uniform probabilities, then the sender
consults the sender urn corresponding to the current state and
draws a ball at random, where each ball in the urn has the
same probability of being drawn. The signal on the drawn
ball is sent to the receiver. The receiver then consults the
receiver urn corresponding to the signal and draws a ball at
random. If the action on the drawn ball matches the cur-
rent state of the world, then the sender and the receiver each
return their drawn ball to the respective urn and add another
ball to the urn with the same label as the drawn ball; other-
wise, the sender and receiver just return their drawn ball to
the respective urn. On this basic urn learning strategy, there is
no penalty to the agents for the act failing to match the state.
The game is repeated with a new state of the world.

Skyrms (2004, 2006) and Huttegger (2007a,b) have studied
2-state/2-term Lewis signaling games as models for the evo-
lution of term languages. The basic 2-state/2-term signaling
game with urn learning is relatively simple and presents a dif-
ficult context for the evolution of a successful language. The
space of possible states is symmetric with no special saliencies,
and a further difficulty is that the learning dynamics is simple
reinforcement learning with no penalty for failure. The argu-
ment is that if a successful term language can evolve in this
context, then it is all the more plausible that a successful lan-
guage might similarly evolve in contexts with special saliencies
or more sophisticated learning strategies.

Skyrms (2006) has shown for urn learning (by simula-
tion) and Huttegger (2007a) has shown for the closely related
replicator dynamics (by proof), that perfect signaling always
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TABLE 1
Run failure rates for Lewis signaling
games with urn learning

Model Run failure
rate
3-state/3-term 0.096
4-state/4-term 0.219
8-state/8-term 0.594

evolves in the 2-state/2-term signaling game if states are evenly
distributed. Skyrms (2006) has also shown that perfect sig-
naling evolves in a system with two senders and one receiver
when the senders observe different, prearranged two-cell par-
titions of a four-state space.

Itis easy to get a sense of how successful evolution of signaling
systems works in the 2-state/2-term Lewis signaling game with
simple reinforcement learning. Adding balls to the signal and act
urns when an act is successful changes the relative proportion of
balls in each urn, which changes the conditional probabilities of
the sender’s signals (conditional on the state) and the receiver’s
acts (conditional on the signal). The change in the proportion of
balls of each type in each urn increases the likelihood that the
sender and receiver will draw a type of ball that will lead to suc-
cessful coordinated action. Here the sender and receiver are simul-
taneously evolving and learning a meaningful language. That they
have done so is reflected in their track-record of successful action.

The situation is more complicated for signaling games with
more (or fewer) states or terms or if the distribution of states
is biased (see Barrett, 2006; Huttegger, 2007a). In such modi-
fied games, partial pooling equilibria may develop and prevent
convergence to perfect signaling. Table I shows the run failure
rates for Lewis signaling games with more than two states and
terms (see Barrett, 2006 for more details). Here there are 103
runs of each model with 10° plays/run. A run is taken to fail
if the signal success rate is less than 0.8 after 10 plays.
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TABLE II
Distribution of signal success rates in the
8-state/8-term signaling game

Signal success Proportion
rate interval of runs
[0.0, 0.50) 0.000
[0.50, 0.625) 0.001
[0.625, 0.75) 0.045
[0.75, 0.875) 0.548
[0.825, 1.0] 0.406

While these results illustrate failures in uniform conver-
gence to perfect signaling, each system is always observed to
do better than chance and hence to evolve a more or less
effective language. In those cases where perfect signaling fails
to evolve in the 3-state/3-term game, the system nevertheless
approaches a signaling success rate of about 2/3.2 Similarly,
in the 4-state/4-term game, when a system does not approach
perfect signaling, it approaches a success rate of about 3/4.

The behavior of the 8-state/8-term system is more compli-
cated since there are several partial pooling equilibria corre-
sponding to different signal success rates. The distribution of
signal success rates in the 8-state/8-term game with 10° runs
and 10° plays/run is given in Table II.

The partial pooling equilibria that sometimes block con-
vergence to perfect signaling in such games are an artifact
of simple reinforcement learning. If one allows for a slightly
more sophisticated learning strategy, then one gets a better
rate of convergence to perfect signaling. On the 8-state/8-term
(+2, —1) signaling game, success is rewarded by adding to the
relevant urns two balls of the type that led to success and fail-
ure is punished by removing from the relevant urns one ball
of the type that led to failure. As illustrated in Table III, this
learning strategy more than doubles the chance of perfect sig-
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TABLE III
Distribution of signal success rates in the
8-state/8-term (+2, —1) signaling game

Signal success Proportion
rate interval of runs
[0.0, 0.50) 0.000
[0.50, 0.625) 0.000
[0.625, 0.75) 0.002
[0.75, 0.875) 0.110
[0.825, 1.0] 0.888
sender - 5
A ; .
State: Signal A: 0,1 receiver Act:
1,2, 3 4 1,2, 3 4
sender -
B Signal B: 0,1
Figure 2.

naling evolving in the 8-state/8-term game. More sophisticated
learning strategies do better yet.?

2. SYNTACTIC GAMES AND DYNAMIC PARTITIONING

While the signaling games considered so far illustrate how
a simple term language might evolve from random signal-
ing, it is natural to ask about more subtle linguistic conven-
tions. Syntactic games are extensions of Lewis signaling games
where there are more states relevant to successful action than
available terms but also more than one signal is available on
each play of the game. The syntactic degrees of freedom pro-
vided by multiple ordered signals may then evolve to be used
for the representation of states.

In the 4-state/2-term/2-sender syntactic game there are two
senders who observe the state of the world, then each sends
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a signal of either 0 or 1 (see Figure 2). Each signal is
independent in the sense that neither sender knows what the
other sent. There is one receiver who knows each signal and
which sender sent it but does not know the state of the world.
There are four acts, each corresponding to one of the four
states. A receiver’s act is successful if and only if the cor-
responding state obtains. We will start again with basic urn
learning where each of the senders has her own urns and
where both senders and the receiver add a ball of the success-
ful signal or act type to the appropriate urn on success and
simply replace the drawn balls on failure. We will also sup-
pose uniformly distributed states.

Since the receiver knows which sender sent each signal, the
two signals together may be considered to be a single length-
two message. The order of the two terms provides syntax that
may evolve to represent states.

This is a very difficult context for the evolution of lan-
guage. Since there are four states and four acts but only two
terms, perfect signaling can only evolve if the senders and
receiver learn to use the available syntactic structure to code
for the state-act pairs. Further, the state space is symmet-
ric with no special saliencies and the simple learning dynam-
ics allows for only positive reinforcement. And since neither
sender knows what signal was sent by the other, they cannot
directly learn to correlate their signals to code for the state.
Nevertheless, the senders and receiver typically evolve a suc-
cessful language that codes for each of the four state-act pairs.

As with the 4-state/4-term Lewis signaling game, the 4-state/
2-term/2-sender syntactic game with basic urn learning typically
approaches perfect signaling (approximately 3/4 of the runs are
successful). Table IV shows simulation results for the 4-state/
2-term/2-sender game with a comparison to the results of the
4-state/4-term game.

On a successful run of the 4-state/2-term/2-sender game,
the senders and receiver simultaneously evolve coordinated
partitions of the state space and a code where each sender’s
partial information together selects a state. The code that
evolves on a successful run is a permutation of “00” means



230 JEFFREY A. BARRETT

TABLE IV
Failure rates of the 4-state/2-term/2-sender syntactic game. The 4-state/
4-term Lewis signaling game in included for comparison

Number 4-state/2-term/2-sender 4-state/4-term failure
of plays/run  failure rate (< 0.8 signal rate) rate (< 0.8 signal rate)

106 0.269 [2000 runs] 0.219 [1000 runs]
107 0.25 [100 runs] 0.17 [100 runs]
108 0.27 [300 runs] 0.19 [100 runs]

state 1, “01” means state 2, “10” means state 3, and “11”
means state 4. Partial pooling equilibria are responsible for
those runs where perfect signaling does not evolve. Such failed
runs are observed to approach a signaling success rate of
about 3/4, and thus still do better than chance and, in this
sense, represent the evolution of a language.

More complex coding schemes evolve in syntactic games
with more states, more senders, or more terms. In the 8-state/
2-term/3-sender syntactic game, there are eight states and
three independent senders, each restricted to the two terms.
With basic urn learning, this model approaches perfect signal-
ing about 1/3 of the time. In this case, each of the eight possi-
ble states of the world is represented by a length-three binary
string. The distribution of signal success rates for 10° runs
with 10° plays/run is given in Table V and the correspond-
ing Lewis signaling game (with one sender and eight terms) is
included for comparison. Again, while the evolution of partial
pooling equilibria sometimes prevents the evolution of perfect
signaling, a more-or-less effective language always evolves.

A slightly more sophisticated learning strategy can sig-
nificantly improve the chance of evolving perfect signaling
in a syntactic game. Table VI gives results for the 8-state/
2-term/3-sender (+3, —1) system on 103 runs with 10° plays/run
(the learning strategy is reinforcement where the senders and
receiver add three balls of the successful type on success and
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TABLE V
Distribution of signal success rates in the 8-state/2-term/3-sender syntactic
game
Signal success 8-state/2-term/3-sender 8-state/8-term model
rate interval model proportion of runs proportion of runs
[0.0, 0.50) 0.000 0.000
[0.50, 0.625) 0.001 0.001
[0.625, 0.75) 0.081 0.045
[0.75, 0.875) 0.589 0.548
[0.825, 1.0] 0.329 0.406

TABLE VI
Distribution of signal success rates in the 8-state/2-term/3-sender (+3, —1)
syntactic game. The distribution for the 8-state/8-term (+3, —1) is included
for comparison

Signal success 8-state/2-term/3-sender 8-state/8-term (+3, —1)
rate interval (+3, —1) proportion proportion of runs
of runs

[0.0, 0.50) 0.000 0.000

[0.50, 0.625) 0.000 0.000

[0.625, 0.75) 0.004 0.004

[0.75, 0.875) 0.157 0.225

[0.825, 1.0] 0.839 0.771

remove one ball of the failed type on failure). Results for the
8-state/8-term (+3, —1) game (one sender with eight terms and
with the same positive and negative reinforcement as the syn-
tactic game) is included for comparison. With its upgraded
learning dynamics, the 8-state/2-term/3-sender (+3, —1) system
approaches perfect signaling on most runs.
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TABLE VII
Distribution of signal success rates in the 9-state/3-term/2-sender (+1, —0)
and the 9-state/3-term/2-sender (+1.5, —1.0) syntactic games

Signal success 9-state/3-term/2-sender 9-state/3-term/2-sender
rate interval (+1, —0) proportion (+1.5, —1.0) proportion
of runs of runs

[0.0, 0.6) 0.000 0.000

[0.6, 0.7) 0.005 0.000

[0.7, 0.8) 0.135 0.000

[0.8, 0.9) 0.610 0.051

[0.9, 1.0] 0.250 0.949

Codes involving more than two terms may also evolve in
a syntactic game; indeed, the efficiency of simple reinforce-
ment learning in evolving a trinary code is comparable to
the efficiency in evolving a binary code for a similar number
of state-act pairs. For the 9-state/3-term/2-sender game, there
are partial pooling equilibria at signal success rates of 0.88,
0.77, and 0.66. Table VII gives the results of 9-state/3-term/
2-sender games on 103 runs with 10° plays/run with only pos-
itive reinforcement and with both positive and negative rein-
forcement learning. Perfect signaling is approached about 1/4
of the time for positive reinforcement alone and almost always
for positive and negative reinforcement together.

In a syntactic game, systematically interrelated partitions of
the state space co-evolve with the successful language. There
is one partition of the space for each position in the mes-
sage, a term at a position selects an element in the cor-
responding partition in such a way that the ordered terms
of a message together select a single state at the level of
individuation required for successful action. In the 9-state/
3-term/two-sender game two coordinated three-cell partitions
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of the state space evolve so that a length-two message serves
to uniquely select a single state.*

3. NUMBER OF TERMS, MESSAGE LENGTH, AND
THE EFFICACY OF LANGUAGE EVOLUTION

Available vocabulary and syntax may play different roles in
the evolution of a language. This can be seen by considering
possible evolutionary trade-offs between the number of avail-
able terms and available syntax. Is it more difficult, for exam-
ple, to evolve a successful language with more available terms
and a simple syntax or with a more complex available syntax
and fewer terms? While one should expect the answer to such
a question to be contingent on the particular learning strategy
employed, it is possible to get some insight here by assuming
simple reinforcement learning, holding constant the number of
types of state that must be distinguished for successful action,
then varying the available number of terms and the available
degrees of syntactic freedom. It is supposed that there is no
special cost for using a language that has more terms or a
more complex syntax—that is, the agents are assumed to have
perfect, cost-free memories and to send and to receive cost-
free messages regardless of length.

Suppose that there are 16 types of state that must be dis-
tinguished for successful action, and consider three games:
(1) a 16-state/16-term/l-sender Lewis signaling game, (2) a
16-state/4-term/2-sender syntactic game, and (3) a 16-state/
2-term/4-sender syntactic game. Each of these games has suffi-
cient available terms and/or syntax to evolve perfect signaling
if the degrees of freedom evolve to be used optimally.

Table VIII shows the distribution of signal success rates
over 10° runs for the three games with 10° plays/run. Sys-
tems with more available terms and less available syntax do
slightly better on average than systems with fewer terms and
more syntax. The systems with more available terms, however,
have a much better chance of successfully approaching perfect
signaling in the long run: the 16-state/16-term/l-sender sys-
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TABLE VIII
Distribution of signal success rates and mean signal success rates for a
16-state term game and two 16-state syntactic games. 10° runs with 10°
plays/run

Signal success 16-state/16-term/ 16-state/4-term/ 16-state/2-term/

rate interval 1-sender 2-sender 4-sender
proportion proportion proportion
of runs of runs of runs
[0.0, 0.75) 0.003 0.014 0.017
[0.75, 0.80) 0.067 0.050 0.048
[0.80, 0.85) 0.110 0.131 0.173
[0.85, 0.90) 0.379 0.416 0.439
[0.90, 0.95) 0.369 0.335 0.290
[0.95, 1.0] 0.072 0.054 0.033
Mean signal 0.8829 0.8781 0.8704

success rate

tem is more than twice as likely to approach perfect signaling
on simple reinforcement learning than the 16-state/2-term/4-
sender system.

On the other hand, as illustrated by Table IX, more avail-
able syntax and fewer available terms does better than more
terms and less syntax in the short run. With 2 x 10* plays/run,
the mean signal success rate over 10° runs for the 16-state/
2-term/4-sender game is higher than for the 16-state/16-term/
1-sender game by a factor of about 1.3.

For basic urn learning then more available terms and less
available syntax helps in the long-run, and more syntax and
fewer terms helps in the short-run. But again, one should, in
general, expect such results to be contingent on the particular
learning strategy.

4. CONCLUSION

Syntactic games illustrate how language might evolve by
exploiting both available vocabulary and available syntax to
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TABLE IX
Distribution of signal success rates and mean signal success rates for a
16-state term game and two 16-state syntactic games. 10° runs with 2x10*
plays/run

Signal success rate 16-state/16-term/ 16-state/4-term/ 16-state/2-term/

interval 1-sender 2-sender 4-sender
proportion proportion proportion
of runs of runs of runs
[0.0, 0.45) 0.530 0.026 0.004
[0.45, 0.50) 0.339 0.164 0.057
[0.50, 0.55) 0.116 0.394 0.223
[0.55, 0.60) 0.015 0.312 0.394
[0.60, 0.65) 0.000 0.100 0.244
[0.65, 1.0] 0.000 0.004 0.078
Mean signal 0.4485 0.5407 0.5781

success rate

represent states at a level of description sufficient for success-
ful action. They also show how available vocabulary and syn-
tax might play different roles in the evolution of a successful
language. Exactly how they interact with each other should be
expected to depend on the particular learning strategy and on
any special costs for remembering terms or syntax or for the
transmission of longer messages.
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NOTES

1. While an even distribution of states may seem to contribute to a
difficult environment for language evolution, it is harder for per-
fect signaling to evolve under simple reinforcement learning when the
probability distribution over states of the world is not uniform. The
agents might get a good enough success rate by always choosing the
more likely state to reinforce the use of more than one term for this
state; and since there is no punishment for failure on this learning
strategy, there is no evolutionary pressure to undo these reinforced
dispositions. See Huttegger (2007a) for more details.

2. Systems that approach a signaling success rate of 2/3 here do not
learn to signal reliably with two out of three terms; rather, such sys-
tems approach a partial pooling equilibrium where two of the signal
terms correspond to the same state-act pair and the other term is
used to represent both of the other state-act pairs, and the sender
and the receiver follow (different) mixed strategies. See Barrett (2006)
for more details.

3. Simulated agents using the Bereby-Meyer and Erev (1998) adjustable
reference point with truncation learning model, which was designed
to model empirical features of actual human learning, for example,
are always observed to approach reliable signaling for some param-
eter settings of the ARP model (Barrett, 2006).

4. It is a curious feature of all of the signaling games considered in this
article that the signal success rate is always observed to be greater
than 1/2. While Simon Huttegger has a argument for why the suc-
cess rate should be better than chance signaling for such games, it
is unclear, at least to me, why it should always be better than 1/2.
This may be a property related to the sure-fire evolution to perfect
signaling in the context of the original two-state Lewis. If so, it may
also depend on the even distribution of states.
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