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On Learning To Become a Successful Loser:
A Comparison of Alternative Abstractions of
Learning Processes in the Loss Domain
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One of the main difficulties in the development of descriptive models of
learning in repeated choice tasks involves the abstraction of the effect of losses.
The present paper explains this difficulty, summarizes its common solutions,
and presents an experiment that was designed to compare the descriptive
power of the specific quantifications of these solutions proposed in recent research.
The experiment utilized a probability learning task. In each of the experiment’s 500
trials participants were asked to predict the appearance of one of two colors.
The probabilities of appearance of the colors were different but fixed during
the entire experiment. The experimental manipulation involved an addition of
a constant to the payoffs. The results demonstrate that learning in the loss
domain can be faster than learning in the gain domain; adding a constant to
the payoff matrix can affect the learning process. These results are consistent
with Erev & Roth’s (1996) adjustable reference point abstraction of the effect
of losses, and violate all other models.  © 1998 Academic Press

The discovery that human decision makers often violate the prescription of Savage’s
(1954) expected utility theory (see e.g.,, Kahneman & Tversky, 1979; Thaler, 1987
Camerer, 1995) has led researchers to seek descriptive alternatives for this theory
and the related rationality assumption. Among the most promising alternatives is
the adaptive learning approach. According to this approach people are not “natural
utility maximizers,” but can learn to respond to the incentive structure in an adaptive
fashion in certain settings. Thus, two psychological factors have to be quantified in
order to predict economic behavior: the initial decision tendencies and the adaptive
learning process (Roth & Erev, 1995).!
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focuses on predicting their sensitivity to the economic incentive structure.
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The present research focuses on the quantification of the learning process. It
addresses one of the main difficulties in the development of quantitative descriptive
learning models: the abstraction of the effect of losses. Losses create a problem
because experimental data support the view that choice probabilities are approximately
linearly related to the ratio of accumulated reinforcements (Herrnstein, 1961; Roth &
Erev, 1995). Thus, to capture this robust observation, descriptive models have to
assume that choice probabilities are determined by a monotonic function of the
accumulated reinforcements and this function must have strictly positive values.

Five distinct solutions to this abstraction problem have been adopted in recent
attempts to develop descriptive learning models. The main goal of the current paper
is to compare the descriptive power of these solutions (the specific models). We
hope that a better understanding of the implications of the different solutions will
facilitate a discovery of a robust approximation of learning in simple decision tasks.

The paper proceeds as follows: The next section summarizes the five available
solutions to the abstraction problem. This section demonstrates that the different
solutions have distinct qualitative predictions concerning the effect of the addition
of constants to the payoffs in simple decision tasks. Under the assumption that
changes in the payoffs do not affect the parameters, the most common solution (the
assumption of an exponential response rule) typically implies no effect, while the
solution proposed by Erev and Roth (that includes an adjustable reference point
and the truncation of negative values) implies a nonlinear effect.

An experiment that was designed to compare the descriptive power of the distinct
abstractions is then presented. It examines a binary decision under uncertainty
(probability learning) task. The experiment supports the adjustable reference point and
truncation solution. It shows that the qualitative predictions made by this model capture
the main experimental results. In addition, this model with the original parameters
(proposed by Erev and Roth, 1996) provides a good quantitative fit for the data.

The implications and some limitations of these results are discussed in the
conclusions.

1. THE CHALLENGE AND ALTERNATIVE SOLUTIONS

As noted above, the difficulty in abstracting the effect of losses in descriptive
models of learning is a result of the fact that in the gain domain choice probabilities
appear to be almost linearly related to the ratio of accumulated payoffs. Herrnstein
(1961, 1970) has discovered this phenomenon in pigeon choice data. In a certain
choice task (a VI-VI schedule) Herrnstein found a matching rule: The choice
probabilities matched the ratio of accumulated reinforcement. Namely, in a binary
choice with two alternatives (4 and B) Herrnstein observed the equality

P(4)=P(A)/[P(A) + P(B)] = R(A)/[R(A4) + R(B)],

where P(J) is the probability of choosing alternative J and R(J) > 0 is the accumulated
reinforcement from these choices.

Following Herrnstein (1970) and Harley (1981), Roth and Erev (1995) used this
linear relation as the basis for their quantification of the Law of Effect (Thorndike,
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1898). The basic model can be summarized by the following three assumptions (Luce,
1959, shows that the distinction between the three assumptions facilitates model
comparison):

Al. INITIAL PROPENSITIES. At time t =1 (before any experience has been acquired)
the DM (player)? has an initial propensity to play the kth pure strategy, given by
some real number q¢,(1).

A2. UPDATING RULE. [If the DM plays the jth pure strategy at time t and receives
a non-negative payoff of x;, then the propensity to play strategy k is updated by setting

qi(1) + X5, if k=j;
qil1), otherwise.

Qk(l‘l'l):{

A3. PROBABILISTIC RESPONSE RULE. The probability p,(t) that the kth pure
strategy will be played at time t is

_ qx(2)
> q1)

(1)

where the sum (here and throughout the paper) is over all of the DM’s pure strategies i.

So pure strategies which have been played and had success tend over time to be
played with greater frequency than those which had less success. Roth and Erev
(1995, and Erev & Roth, in press) observed that this linear rule provides a good
description of human choice behavior in a variety of decision tasks, even without
any additional parameters. It tracks behavior even when its parameters (the initial
propensities) are randomly selected.

These results imply that descriptive models of learning should predict an approx-
imately linear choice function in the gain domain. Yet, the basic linear rule cannot
be used when negative payoffs are possible. Five main solutions to this difficulty,
suggested in previous research, are compared in the present paper.

1.2. The Different Solutions and Quantitative Models

Each of the models presented below can be described by assumption Al as stated
above, and variants of assumptions A2 and A3. To facilitate the comparison of the
different solutions we will consider the models’ predictions for the decision tasks
studied in the experiment described below. In each of the tasks (experimental condi-
tions) the DM participates in 500 independent trials. In each trial the DM is asked
to guess which of two mutually exclusive events L or H will occur. In all trials the
probability of H is 0.7 (and the probability of L is 0.3). After each trial the DM
receives an immediate feedback concerning the obtained event and his/her payoff.

The different tasks differ with respect to the obtained payoffs. In condition 4, 0
the DM earns 4 point when he or she guesses correctly and loses nothing when he

2 Although we drop the subscript for distinct players, the models considered here apply for n-person
games.
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or she is wrong. The other two conditions were created by subtracting a constant
from these payoffs. In condition 2, —2 the payoffs are 2 for a correct and —2 for
an incorrect response, and in condition 0, —4 the DM looses 4 points when he or
she is wrong and earns nothing for a correct response.

Simple decision problems of this type, referred to as probability learning tasks,
were studied extensively in the 1950s and 60s. Whereas the optimal response is
always to choose the most common event (guess “H”), the literature reveals that
DMs are slow learners. After 100 and 200 trials they tend to “probability match;”
that is, to select “H” in 70 % of the trials.* With longer experience DMs slowly move
toward the optimal choice (see Edwards, 1961). In addition, high payoffs speed the

learning process (Siegel, Siegel & Andrew, 1964). The addition of constant to the
payoffs was not studied by previous research.

Three specific characteristics of the current task are utilized below in the presen-
tation and the derivation of the predictions of the distinct models. We will assume
that DMs: (1) Consider only two strategies, (2) know the outcomes of both
strategies after each trial, and (3) have uniform initials tendencies. In addition, we
assume that the experimental manipulation cannot change the underlying learning
process (the parameters of the model).

1.2.1. A Low Reference Point Solution (the LRP Model)

Erev and Roth (1996) proposed two variations of the basic model to address
potential losses. The first variant assumes that the reinforcement is a function of the
objective payoff (from choosing ;) at trial ¢ (x;) and this function, R(x;), returns
nonnegative values. Specifically, in a model referred to as the LRP model, Erev and
Roth utilized the function

R(xj) =xj_)(min

Where X, is the worst possible outcome.

In addition to this modification, the LRP model includes an abstraction of two
additional important characteristics of human and animal learning: Generalization
(and experimentation) and Recency. These assumptions were quantified by the
following generalized version of assumption A2:

a1+ 1) =(1=9) q(1) + Ej(k, R(x;)). (A2'P)

In assumption A2'"™P, ¢ is a forgetting (or recency) parameter which slowly reduces
the importance of past experience. R(.) is the function, defined above, which translates
payoffs into rewards, and E is a function which determines how the experience of playing
strategy j and receiving the reward R(x;) is generalized to update each strategy k.

31t is important to note that the similar names do not imply that Herrnstein’s “matching law” predicts
“probability matching.” Herrnstein’s matching law, as quantified above, predicts slow learning toward
the optimal choice in condition 4, 0 (and cannot be utilized to address the conditions with negative
payoffs).
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Erev and Roth assumed a Gaussian generalization/error function. For the binary
case this function is reduced to:

R(x;)(1—e¢), if j=k;
R(x;)e,

J

Ej(k, R(x;)) = { otherwise.

Under the assumption of uniform initials, the LRP model has three parameters:
¢ and ¢ as defined above, and an initial strength parameter S(1)=3 ¢,/(average
reinforcement from random decisions).*

The predictions of this model for the current tasks, with the parameters that best
fit Erev and Roth’s (in press) data (¢=0.2, ¢ =0.1, and S(1)=9), are presented in
the left-hand column of the LRP panel in Fig. 1. (The right-hand column of Fig. 1
shows the model’s predictions with estimated parameters and will be discussed
below.)

The predictions (for this and all other models) were derived by running (300)
computer simulations in which simulated individuals that behave according to the
model’s assumptions perform the three tasks described above. The predictions are
summarized by the expected proportion of “H” choices in five blocks of 100 trials.
As can be seen in this plot, the model predicts slow learning (in line with Edwards’
findings) and no condition effect. Since X, tracks the addition of constants to the
payoffs, this manipulation does not affect the model’s predictions.

1.2.2. An Adjustable Reference Point and Truncation Solution (the ARP Model)

Examination of the animal learning literature suggests that the effect of the rein-
forcements depends on a reference point that can be a function of the learner’s
experience. Premak (1965, 1971) proposed that reinforcements have a relative value
that is determined according to a reference point. Outcomes above the reference
point are perceived as reinforcements and outcomes below are perceived as punishments.
The position of the reference point usually was set at zero, and outcomes greater
than zero were perceived as gains and below zero as losses. However the position
of the reference point could be a function of expectations, goals, and experience.
A classic experiment by Tinklepaugh (1928) demonstrates the effect of experience
on the reference point. Tinklepaugh taught monkeys a simple discrimination task.
He reinforced one group of monkeys with bananas and the other with lettuce leaves.
As long as one monkey was reinforced with bananas and the other with lettuce the
task was learned quickly. However when the monkey that normally was rewarded
by bananas received lettuce instead the accuracy decreased rapidly. For this monkey
the lettuce leaves were perceived as punishment. The experience with the bananas
as a reward set the reference point for this monkey higher than the reference point
of the monkey that received lettuce from the beginning. Similar results were obtain
by Tolman (1932) in an experiment with rats. To address these results Erev and

“In the current setting players are assumed to know the possible (average and minimal) payoffs. The
model can approximate behavior even when these values are not known under the assumption that they
can be learnt in the first few trials.
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FIG. 1. The models’ predictions (with parameters that were estimated in previous studies) and best
fit (with estimated parameters that minimize the MSD scores). Each curve shows the proportion of “H”
choices in 5 blocks of 100 trials in one of the conditions.

Roth explored a family of models with adjustable reference points (the ARP models).
These models that generalize the LRP model assume that the reinforcement function
changes with time. Specifically,

where p(t) is the reference point in trial ¢. The reference point at the beginning of
the experiment is denoted by p(1), and it is assumed to be updated by the following
linear weighting function:

(I=wH)p(t)+(wF)x, if x,>p(1),

’)(Z“):{(lw—>p(r)+(w—)x_,- it < p(1),
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FIG. 1—Continued.

where w* and w— are the weights assigned to positive and negative reinforcements,
respectively.

Finally, to address the problem of negative reinforcements a truncation rule is
added. Thus A2 is replace with:

q(1+1) =max[v, (1 —¢) q(1) + E;(k, R/(x;))]. (A2%P)

where v >0 is a technical parameter which ensures that propensities remain positive.

After reducing the number of initial propensities parameters (by the uniform initial
assumption explained above) the ARP model has seven parameters (&, v, ¢, S(1),
p(1), w*, and w™).

The predictions of the model with the parameters estimated by Erev & Roth
(1996, and utilized by Rapoport et al., 1997, Rapoport et al., in press; Erev &
Rapoport, in press) are presented in the left-hand column of Fig. 1. The parameters’
values are ¢ =0.2, v=0.0001, ¢ =0.001, S(1)=3, p(1)=0, w* =0.01, and w— =0.02.
The model predicts a nonlinear effect of a subtraction of constants. The first subtraction
(from 4,0 to 2, —2) speeds the learning process, whereas the second (from 2, —2
to 0, —4) slows it slightly. Yet the 0, —4 condition is predicted to lead to faster
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learning than the 4, 0 condition. A sensitivity analysis (that will be reported in details
below) shows that these qualitative predictions are robust to changes in the model
parameters.

1.2.3. An Exponential Response Rule Solution

Whereas the two solutions considered above are based on a transformation of the
accumulated reinforcements, a more popular solution is based on a transformation
of the response rule. In particular, many researchers (e.g., Busemeyer & Myung,
1992; Camerer & Ho, in press; Fudenberg & Levine, 1995; McKelvey & Palfrey,
1995; Mookherjee & Sopher, 1997) assume an exponential response rule. These
models replace assumption A3 above with:

pelt) =exp[Agi(1)] / S expl Ag,(1)]. (A3)

Note that the parameter 4 determines the extremeness of the predictions. With high
A the model’s predictions are close to being deterministic, and with low A they move
toward uniform predictions. Exponential models are more convenient mathematically
as they climinate the need for a nonmonotonic truncation function. Three types of
exponential models will be considered here.

An Exponential Discounted Sum (EDS) Model. Tang (1996, and Chen & Tang,
1996) examined a model that utilizes A1, a variant of A2""P that implies a discounted
sum (6=0, R(x;)=x;), and A3°.

Tang studied games with only non-negative payoffs and found that although the
EDS model has an additional parameter, it does not lead to significantly better
predictions than the basic model (with A3 linear response rule). The predictions of
the EDS model with the parameters estimated by Tang (4 =0.02, ¢ =0.1)° are
presented in Fig. 1. The plot reveals very slow learning and no condition effect.
Similar predictions are also made based on the parameters estimated by Chen and
Tang (1=0.006, ¢ =0.2). Yet, faster learning and a clear effect for the addition of
constant is predicted by the EDS given certain parameters. In particular, simula-
tions that were run with larger 4 (e.g., 0.8, 1) and small ¢ (e.g., 0.001, 0.01) reveal
that with these values the model predicts fast learning around 0 (in condition
2, —2) and particularly slow learning in the loss domain (condition 0, —4).

An Exponential Fictitious Play (EFP) Model. Fudenbergand Levine (1995) studied
the convergence properties of learning rules that assume a continuous and smooth
best reply response rule. As an example of a function of this type they proposed an
exponential fictitious play (EFP) model. This model utilizes the A3° response rule
and assumes that the propensities are the expected rewards under the assumption
of a static environment. That is, the DM is assumed to be a naive statistician who
tries to assess the expected reward of the different alternatives. Whereas these assessments
are fictitious in games (as the other players change their acts and the environment

5 Whereas Erev & Roth chose the parameters that “best” reproduce the complete learning curve, Tang
and Chen selected the parameters that “best” predict trial 7+ 1, given the model and the first ¢ trials.
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is not static) they are accurate in the present one person static task. Following Camerer
and Ho (in press) this model can be summarized by the following updating rule:

g1+ 1) =[(N(1) +1—=1)-q4(1) + v, J/[N(T) + 1], (A2°P)

where v, is the payoff that the player would receive for a choice of strategy k in trial
t (v, =x; if k was chosen),® and N(1) is a parameter that determines the weight of
the initial (uniform) tendencies.

It is easy to see that this model predicts a convergence to a fixed choice probability
P(“H”)=1/[1 +exp(—4-1.6)]; that is, it is not affected by the addition of a constant
to the payoffs. The speed of convergence is expected to be a function of initial weight
parameter. As the initial weight increases, the speed of convergence decreases.

An Experience Weighted Attractions (EWA) Model. Camerer and Ho (in press,
1996) developed an experienced weighted attraction (EWA) model that generalizes
reinforcement learning and best reply rules. Their model can be summarized by A3°
and the following variant of A2:

ai(t+1)={(1=¢)-N(1) - q(t) + [0+ (1 =0) - I(1, k)] - ve} /[ - N(1) + 1].
(Azewa)

where ¢ is a forgetting parameter, N(¢)=#-N(t—1)+1 (for t>1) is a function of
the number of trials the DM experienced, ¢ is a parameter that determines the
relative effect of reinforcements and best reply considerations, I(z, k) is an index
function that returns the value 1 if strategy k was selected in trial ¢z, and 0 otherwise.

Under the assumption of uniform initial propensities the EWA model has five
parameters: 4 as in the other exponential models considered above, initial weight
N(1), a forgetting parameter ¢, an experience depreciation parameter #, and the
reinforcement/expectation (imagination) parameter J. Note that with N(1)=1,
n=0, 0 =0, it coincides with the EDS model. With ¢ =0, =1, 6 =1, it coincides
with the EFP model.

The predictions of the EWA model with the parameters estimated by Camerer
and Ho (1996) for a 6 x 6 constant sum game (1=0.27, N(1)=1243, $ =0, n=0.94
and 6 =0.79) are presented in Fig. 1. With these parameters, the model predicts very
slow learning in the current tasks and no condition effect. Since the EWA generalizes
the EDS and the EFP models, its sensitivity to the addition of a constant is parameter
specific. Within certain parameters, the pattern implied by the EDS model is predicted
here.

1.24. A Cumulative Normal Response Rule Solution (and the CNFP Model)

An alternative transformation of the response rule was studied by Cheung and
Friedman (1994, 1996). Like Fudenberg and Levine their model is a probabilistic
best reply rule. The propensity to select a certain choice is a weighted average of

S For example, in condition 4, 0 v, =4 if k was the “accurate” response and 0 otherwise.
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the strategy’s past return. In the 1996 paper they used a one parameter updating
rule that can be approximated by

G+ 1) =[1=9)- (N(D)+1—=1)-qu(t) + v, /[(1 =) - (N(1) +1—=1)+1].
(Azcnfp)

To solve the problem of potential negative propensities Cheung and Friedman
replaced A3 with an accumulated normal response rule. For the binary case their
rule implies:

pilt) =F{a+ - [qxt) —q1)1}, (A3P)

where F is the standard normal commutative function, « is a parameter that reflects
an a priori preference for strategy k, f is a responsiveness to learning parameter,
and j #k.

For the current task in which the DM has no prior information about the
strategies it is natural to assume that « =0. Under this assumption (and an assump-
tion of a small ¢ value), the model predicts convergence to P(“H”)=F{1.6-f} in
all three conditions considered here. As in the case of the EFP model the speed of
convergence is expected to be a function of the initial propensities parameter. With
high ¢ values the model predictions move toward uniform predictions.

1.2.5. Relative Reinforcement Solutions and a Cardinal Linear Operator (CLO)
Model (March, 1996)

In its general form the linear operator model (Bush & Mosteller, 1955) allows for
outcome specific parameters. These outcome parameters determine the direction
and the magnitude of linear operations on the propensities (that are equal to the
choice probabilities in this model).

Whereas this solution is convenient for modeling behavior in settings in which
there is little reason to assume a specific quantitative relation among the outcomes,
it appears to be too weak when the payoffs are small monetary prizes. To address
human decision making in gambles, March (1996) considered the following variant
of the linear operator updating rule (for the two strategy, two outcome case).’

1—(1—¢)“(x/)-[1—qj(t)], if k=jandx;>0;
gt +1) =< (1= )" . (1), if k=jand x,<0; (A2¢%)
I —g;(t+1), if k#j;

where a(x;) returns the absolute value of x;.
The predictions of this model for the current tasks with the parameter chosen by
March (¢ =0.1) are presented in Fig. 1. The main prediction is a condition effect

71t should be noted that March suggested this specific rule to demonstrate a general point (that
reinforcement learning can lead DM to risk aversion in the gain domain and loss aversion in the loss
domain). He studied two additional rules that cannot be utilized in the current setting.
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that contradicts the prediction of the ARP model: faster learning in the 4, 0 condition
than in the other two conditions.®

1.3. Summary

The seven models presented above are summarized in Table 1. This table shows
that, whereas the models are rather similar (predict slow probabilistic adjustment
to payoffs), they have distinct predictions with regard to the effect of the addition
of constants to the payoffs. Three models (LRP, EFP, and CNFP) predict no effect.
For the other models we obtained parametric specific predictions. With the parameters
estimated in previous research, the ARP model predicts the slowest learning in the gain
domain, the CLO model predicts slow learning in the loss domain, and the EDS
and EWA predict small differences. The experiment presented below was designed
to compare the predictions with empirical results.’

2. EXPERIMENT

2.1. Method

Participants. Forty-two Technion students served as paid participants in the
experiment. They were randomly assigned to the experimental conditions. The exact
payoffs were contingent on performance and ranged from 24-26 Shekels ($8-8.5).

Apparatus and Procedure. The experiment was programmed and run using Visual
Basic 3 for Windows 3.1. This system was installed on a 486PC, with a Super VGA 14"
screen.

The experiment was run for 500 trials. In line with previous probability learning
experiments the decision problem was described to the participants as a prediction
task. In each trial they were asked to predict the appearance of one of two colors
(Blue or Red). The participants were told that their payoff will be G for a correct
prediction and B for incorrect prediction. The value of G and B defined the experimental
conditions.

The display consisted of three white fields. The upper field showed the cumulative
score, the middle field showed the participant’s prediction and the lower field
showed the actual result of the sampling process.

The two bottom fields (prediction and result) were empty at the beginning of
each trial. The participant’s response ({A) for Blue and {(S) for Red) filled the
prediction field. Two seconds after the response the result field was filled with a
randomly selected color, the cumulative payoff field was updated in accordance

8 Similar predictions are also made by another variant of the Bush and Mosteller model, proposed by
Borgers and Sarin (1995). Borgers and Sarin assume an adjustable reference point (similar to the ARP
model), and distinct forces above and below the reference point.

%1t should be emphasized that we study the predictions of the different models and not the predictions
of the different abstractions of the effect of losses. The models’ predictions are a function of the abstractions
of the effect of losses and other properties of the models.
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to the correctness of the choice. This screen was presented for three seconds, then
the colors were erased from the fields and the next trial began.

Participants were divided randomly into the three conditions (14 participants in
each condition). As noted above, the different conditions varied with respect to the
obtained payoffs. In condition 4, 0 the payoff for inaccurate predictions (B) was 0,
and the payoff for accurate predictions (G) was 4. In addition, the participants
received 2000 initial points.

Condition 2, —2 was created by subtracting 2 points from each outcome. Thus,
the payoffs were B= —2, G =2. The subtracted points (2x500 = 1000) were added
to the initial endowment (which was set to 3000) to insure identical objective incen-
tives in the different conditions.'® In condition 0, —4 the payoffs were B= —4,
G =0 and the initial endowment was 4000 points. The value of each point was 0.01
Shekels ($0.003) in all three conditions.

For each participant, one of the two colors (Red or Blue) was selected to be the
“high probability” accurate response. This color was the accurate response in 70 %
of the 500 trials. The order of the appearance of colors was randomized inde-
pendently for each participant across the 500 trials.

2.2. Results

The experimental results are summarized in Fig.2 by the proportion of “H”
choices (“optimal” choices) in five block of 100 trials in each condition.

A two-ways repeated measure ANOVA (with block as the repeated measure) on
the choice of the dominant color (P(“H”)) was conducted. The independent variables
were the block and the reward condition (0, —4; 2, —2; 4, 0). The analysis revealed a
significant effect of the reward condition F(2,39)=7.8, p <0.001, and of the block,
F(4,156)=25.31, p <0.0005. Post hoc comparisons revealed a difference between
the conditions 2, —2 and 4, 0 (p <0.0006), and between 0, —4 and 4, 0 (p <0.005).
There was no difference between conditions 2, —2 and —4, 0.

To evaluate the robustness of the reward condition effect, we also conducted a
nonparametric ANOVA (Kruskal-Wallis test) on the average choice probability
(across the 500 trials). In line with the results of the traditional test, reported above,
this test reveals a significant effect H(2, N=42)=12.084, p < 0.002.

These significant trends favor the ARP model over the alternative models. This
model correctly predicted the qualitative effect of the addition (subtraction) of
constants from the payoffs.

2.2.1. Quantitative Model Comparison

Predictive Power. The left part of Table 2 presents two quantitative measures of
the accuracy of the predictions made by the models, based on parameters estimated
in previous studies. As explained above, estimated parameters were available

10 That is, each choice pattern (number of “H” choices) over the 500 trials yields the same expected
total payoff in the different conditions.
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FIG. 2. Aggregated experimental results. Proportion of “H” choices in 5 blocks of 100 trials in each
of the three experimental conditions.

for five of the models. The two scores are the correlation and the mean squared
deviation (MSD). Each MSD score is an average of 15 (5 blocks x 3 conditions)
squared deviations between the model’s predictions (left-hand column in Fig. 1) and
the experimental data (Fig.2). (These values were multiplied by 100.) This panel
supports the qualitative analysis: The ARP model provides the most accurate prediction
of the data.

Descriptive Power. The right-hand column of Fig. 1 presents the predictions of
each model with estimated parameters that minimize the MSD scores. The values
of the estimated parameters and the fit of the estimated models are summarized in
the right part of Table 2. Whereas a comparison of estimated models with different
numbers of free parameters is not trivial, a clear picture emerges here: Even with
fitted parameters, none of the alternative models outperforms the ARP model with
the original parameters. Moreover, even with estimated parameters no one of the
alternative models captures the observed condition effect.

2.2.2. Between-Subject Variability

The left-hand column in Fig. 3 presents the learning curve (proportion of “H”
choices in 5 blocks of 100 trials) of each of the participants in the experiment
(14 subjects in each condition) for each of the probability learning tasks. The middle
and the right columns present samples of 14 virtual subjects from the ARP and the
EWA models (that behave according to the model with the parameters that provide
the best fit to the data with estimated parameters). The inspection of this figure
reveals large between-subject differences in the data. The variance predicted by the
ARP model is closer to the data than the EWA variance, but it is still too small.
It seems that the assumption that all participants have the same parameters has to
be relaxed to account for the observed variance.
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TABLE 2

Mean Squared Distance (MSD, multiplied by 100) and Correlation () Coefficients between
the Model’s Predictions and the Experimental Results with Parameters That Were Estimated
in Previous Studies and with Estimated Parameters That Minimize the MSD Scores

Previous studies’ Estimated
Model parameters r MSD parameters r MSD
LRP Erev & Roth (1997) 0.61 2.67 £=0.05,¢9=0.003, S(1)=5 0.67 0.26
e=02,4=0.1, S(1)=9
ARP Erev & Roth (1996) 0.86 0.17 £=0.25,¢4=0.001, S(1)=5, 092 0.08
e=02,¢=0001, S(1)=3 w* =0.028, w™ =0.04,
wt=0.01, w™ =0.02, p(1)=0,v=0.0001
p(1)=0, v=0.0001
EDSI1 Tang (1996) —0.17 10 A=1.05,¢=0.12 0.25 1.62
2=0.02,¢9=0.1
EFP No Data Available A=12,N(1)=10 0.7 0.31
EWA Carmerer & Ho (1996) 067 1.3 $=0.0250=1, 0.73 0.26
(The 6*6 game) N(1)=12.5,n=0.86,
$=0,0=0.79, N(1)=12.43, A=024
n=0.94, =027
CNFP No Data Available ¢ =0.00001, N(1) =20, 0.76 0.25
p=0.75
CLO March (1996) —0.48 4 $=04 0.49 2.69
$=0.1

2.2.3. A Model-Based Analysis of the Robustness of the Condition Effect

Since the models considered here are probabilistic, a prediction of no condition
effect on the mean choice probabilities does not imply that there will be no difference
between small samples of subjects in the different conditions. Thus, in theory, the
significant condition effect reported above could be observed even if one of the models
that predict no effect (on the means) is correct. A two-step analysis was conducted to
evaluate the likelihood of this claim. First, we simulated 20 samples of 14 simulations
for each payoff condition under each model (with Table 2’s estimated parameters). The
20 samples in each condition can be combined in 8000 ((20)(20)(20)) ways to create
a virtual replication of the experiment. Each of the 8000 replications was then subjected
to an analysis of variance of the type performed on the original experiment. The results
of this analysis reveal that for 5 of the models (LRP, EFP, EWP, CNFP, and CLO)
the proportion of replications with a significant condition effect is below 10 %.
A different pattern is observed for the ARP and the EDS models that yield a significant
condition effect in all cases. The direction of the effect agrees with the experimental
results in the case of the ARP model, and contradicts the results in the case of the
EDS model. These results support the suggestion that the effect of the addition of
a constant is not likely to be the result of random variance.
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FIG. 3. Individual learning curves of the experimental participants (14 in each condition) and ran-
domly selected virtual participants (14 in each condition) that behave according to the ARP and the
EWA model with estimated parameters.

2.2.5. Sensitivity Analysis

A sensitivity analysis was conducted to evaluate the robustness of the predictions
of the ARP model to the choice of parameters. Starting with Erev and Roth’s
(1996) parameters, the analysis examined the effect of increasing or decreasing
the value of each parameter by 50%. The analysis revealed that the predicted
qualitative condition effect is robust. Slower learning in condition 4, 0 is predicted
with all the studied parameter values. In addition, in all cases the models’ quan-
titative fit remains high with MSD scores below 0.3.
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3. DISCUSSION

The current results demonstrate that in simple repeated decision tasks the
addition of a constant to the payoffs can affect the speed of learning. In line with
the results of previous probability learning studies (see review in Luce & Suppes,
1965) an extremely slow learning process was observed when the payoffs did not
include negative values. The subtraction of a constant from all payoffs (that did not
affect the objective incentives but implied that suboptimal choices will lead to losses)
facilitated the learning speed.

Only one of the five solutions of the abstraction of losses, considered here,
captures these results. According to this solution that was implemented by the ARP
model, reinforcements are evaluated relative to an adjustable reference point.

The advantage of the ARP solution does not imply that the other four solutions
are not valid. Models that use other solutions can account for the current results
under the assumption that the models’ parameters can be affected by the payoffs,
or with certain additional assumptions (e.g., reinforcement functions with the charac-
teristics of Prospect Theory’s (Kahneman & Tversky, 1979) value function). The
current results simply imply that, under the assumption that the parameters are not
affected by the payoffs, the ARP model provides a better account for the effect of
the addition of a constant than the other six models proposed in various studies
and studied here.

3.1. On the Generality of the Current Results

Although the current results are sufficient to reject models that assume a learning
process that is insensitive to the addition of payoffs, they do not imply that the
addition of constants will always have an effect. In fact, experimental results and
simple thought experiments indicate that the optimal abstraction of the effect of
losses (and the addition of constants) is likely to be more complex than the abstrac-
tion implied by the ARP model. To improve our understanding of this abstraction
problem it is useful to consider settings in which the predictions of the ARP model
appear to hold, as well as settings in which the model is likely to fail.

3.1.1. Consistent Evidence

Previous Probability Learning Studies. Whereas previous probability learning
experiments did not study the effect of the addition of a constant to the payoff
directly, the effect observed here is consistent with the pattern of results observed
in that research. Most importantly, Siegel and Goldstein (1959) found a strong payoff
effect. They studied a probability learning task considered here (with P(H)=0.7) and
compared a 5,0 (G=5, B=0) condition with a 5, —5 condition (G=5, B= —5). Their
results indicate significantly faster learning in the 5, —5 condition. They hypothesized
that this effect is a result of the magnitude of the difference between G and B and
proposed a subjective expected utility explanation. However, a subsequent study
(Myers et al., 1963) failed to support this explanation. Myers et al. found that a
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multiplication of all payoffs by 10 has only a small effect on the learning speed.'!
In a recent study, Bereby-Meyer (1997) shows that both Siegel and Goldstein’s and
Myers’ et al. results are predicted by the ARP model. In fact, Bereby-Meyer shows
that this model (with Erev & Roth’s parameters) provides a good quantitative fit
(better than the fit found here) to all probability learning studies summarized in
Luce and Suppes (1965).

Signal Detection Tasks. An additional demonstration of the significance and
predictability of the effect of the addition of a constant to the payoffs is provided
by Barkan, Zohar, & Erev (in press). This study examines binary decisions in a
probabilistic signal detection task. In each trial the DM saw a numerical signal that
represented a height (that was sampled from one of two distributions with similar
standard deviations but different means). In line with the predictions of the ARP
model,!? Barkan et al. found a significant effect for the addition of constant to the
payoffs.

3.1.2. Limitations

The ARP model with the parameters utilized here and in Erev & Roth (1996)
implies that the initial reference point is at zero, and that the adjustment process
is rather slow. Whereas these quantitative assumptions were found to provide a
good fit to learning in a wide set of situations, it seems that they are not likely to
hold when the DM receives clear information which implies that zero is not the
appropriate reference point. Two situations of this type were considered in the
literature.

Learning among Good (or Bad) Alternatives. Think about a decision setting in
which all alternatives always lead to positive outcomes. For example, assume that
the current task was played with G =104 and B = 100. With the current parameters,
the ARP model predicts an extremely slow learning process. Even after 500 trials
the B outcome will be reinforcing and the proportion of optimal choices will be
below 70 %. We do not believe that this prediction is likely to hold. In fact, some
results (Bereby-Meyer, 1997) show that in less extreme cases (G=6 and B=2;
G = —2 and B= —6) the prediction of the ARP model with the current parameters
is inaccurate. It seems that in these tasks, DMs quickly learn to treat G as a positive
reinforcement and B as a negative reinforcement.

The Effect of Other Players’ Payoff. Erev and Rapoport (in press, and see a
related phenomenon in Bolton, 1991) noticed that in certain settings DMs behave
as if they use other players’ outcomes as their reference point. That is, a profit of
4 points might be a positive reinforcement if other players earn less, but not if other
players earn more.

11 See Mookherjee and Sopher (1997) and Slonim and Roth (1997) for a recent examination of the
effect of payoff magnitude on learning.

12 The extension of the ARP model to signal detection task is provided in Erev et al. (1995) and is
evaluated in Erev (in press).



284 BEREBY-MEYER AND EREV

3.2. Conclusions

The current results clearly show that human learning can be affected by the
addition of constants to the payoffs. It seems that the distinction between gains and
losses affects learning. Thus, modeling this distinction can improve the potential
descriptive power of adaptive learning models.

Of the five abstractions of the effect of losses considered here, the assumption of
an adjustable reference point faired best. Yet it seems that a more careful quantifica-
tion of the reference point is needed. Whereas the quantification proposed by Erev
and Roth provides a good fit for the current data and to previous probability learning
and signal detection experiments, it is not likely to be generally accurate. It seems that
in some settings behavior is better approximated under the assumption of a reference
point that is initially (or quickly adjusted to be) larger than the worst possible out-
come. Future research is needed to provide a better understanding of the optimal
quantification.
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