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One way of simplifying neural networks so they generalize better is to 
add an extra term to the error function that will penalize complexity. 
Simple versions of this approach include penalizing the sum of the 
squares of the weights or penalizing the number of nonzero weights. 
We propose a more complicated penalty term in which the distribu- 
tion of weight values is modeled as a mixture of multiple gaussians. 
A set of weights is simple if the weights have high probability den- 
sity under the mixture model. This can be achieved by clustering the 
weights into subsets with the weights in each cluster having very sim- 
ilar values. Since we do not know the appropriate means or variances 
of the clusters in advance, we allow the parameters of the mixture 
model to adapt at the same time as the network learns. Simulations on 
two different problems demonstrate that this complexity term is more 
effective than previous complexity terms. 

1 Introduction 

A major problem in training artificial neural networks is to ensure that 
they will generalize well to cases that they have not been trained on. 
Some recent theoretical results (Baum and Haussler 1989) have suggested 
that in order to guarantee good generalization the amount of informa- 
tion required to specify directly the output vectors of all the training cases 
must be considerably larger than the number of independent weights in 
the network. In many practical problems there is only a small amount 
of labeled data available for training and this creates problems for any 
approach that uses a large, homogeneous network in order to avoid the 
detailed task analysis required to design a network with fewer indepen- 
dent weights and a specific architecture that is appropriate to the task. 
As a result, there has been much recent interest in techniques that can 
train large networks with relatively small amounts of labeled data and 
still provide good generalization performance. 
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One way to achieve this goal is to reduce the effective number of free 
parameters in the network. A number of authors (e.g., Rumelhart et al. 
1986, chapter 8; Lang et al. 1990; le Cun 1989, 1987) have proposed the 
idea of weight sharing, in which' a single weight is shared among many 
connections in the network so that the number of adjustable weights in 
the network is much less than the number of connections. This approach 
is effective when the problem being addressed is quite well understood, 
so that it is possible to specify, in advance, which weights should be 
identical (le Cun et al. 1990). 

Another approach is to use a network with too many weights, but 
to stop the training before overlearning on the training set has occurred 
(Morgan and Bourlard 1989; Weigend et al. 1990). In addition to the usual 
training and testing sets, a validation set is used. When performance on 
the validation set starts to decrease the network is beginning to overfit the 
training set and training is stopped. Some experience with this technique 
has suggested that its effectiveness can be quite sensitive to the particular 
stopping criterion used (Weigend et ul, 19901.' 

Yet another approach to the generalization problem attempts to re- 
move excess weights from the network, either during or after training, 
to improve the generalization performance. Mozer and Smolensky (1989) 
and le Cun et al. (1990) have both proposed techniques in which a net- 
work is initially trained with an excess number of parameters and then a 
criterion is used to remove redundant parameters. The reduced network 
is then trained further. The cycle of reduction and retraining may be 
repeated more than once. The approach of Mozer and Smolensky (1989) 
estimates the relevance of individual units to network performance and 
removes redundant units and their weights. The method of le Cun et al. 
(1990) uses second-order gradient information to estimate the sensitivity 
of network performance to the removal of each weight, and removes the 
least critical weights. 

An older and simpler approach to removing excess weights from a 
network is to add an extra term to the error function that penalizes com- 
plexity: 

(1.1) 

During learning, the network is trying to find a locally optimal trade- 
off between the data-misfit (the usual error term) and the complexity of 
the net. The relative importance of these two terms can be estimated 
by finding the value of X that optimizes generalization to a validation 
set. Probably the simplest approximation to complexity is the sum of 
the squares of the weights, Ci z$. Differentiating this complexity mea- 
sure leads to simple weight decuy (Plaut et d. 1986) in which each weight 

'This approach is not the way in which cross-validation is usually used in the statis- 
tics community. Usually a cross-validation set is used to determine the scale factor 
applied to a regularization term added to the optimization to prevent overfitting. We 
will see examples of this in the following sections. 

cost = data-misfit + X complexity 
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decays toward zero at a rate that is proportional to its magnitude. This 
decay is countered by the gradient of the error term, so weights that are 
not critical to network performance, and hence always have small error 
gradients, decay away leaving only the weights necessary to solve the 
problem. At the end of learning, the magnitude of a weight is exactly 
proportional to its error derivative, which makes it particularly easy to in- 
terpret the weights (see, for example, Hinton 1986). Minimizing El wf is 
a well-known technique when fitting linear regression models that have 
too many degrees of freedom. One justification is that it minimizes the 
sensitivity of the output to noise in the input, since in a linear system 
the variance of the noise in the output is just the variance of the noise in 
the input multiplied by the squared weights (Kohonen 1977). 

The use of a El w;? penalty term can also be interpreted from a Bayesian 
perspective? The "complexity" of a set of weights, X El w?, may be de- 
scribed as its negative log probability density under a radially symmetric 
gaussian prior distribution on the weights. The distribution is centered 
at the origin and has variance 1/X. For multilayer networks, it is hard 
to find a good theoretical justification for this prior, but Hinton (1987) 
justifies it empirically by showing that it greatly improves generalization 
on a very difficult task. More recently, MacKay (1991) has shown that 
even better generalization can be achieved by using different values of X 
for the weights in different layers. 

2 A More Complex Measure of Network Complexity 

One potential drawback of Ci w? as a penalty term is that it can favor 
two weak interactions over one strong one. For example, if a unit re- 
ceives input from two units that are highly correlated with each other, 
its behavior will be similar if the two connections have weights of w and 
0 or weights of w / 2  and w/2. The penalty term favors the latter because 

(;), + (;), < w2 + o2 (2.1) 

If we wish to drive small weights toward zero without forcing large 
weights away from the values they need to model the data, we can use 
a prior which is a mixture of a narrow (n)  and a broad (b)  gaussian, both 
centered at zero. 

where T,, and r b  are the mixing proportions of the two gaussians and are 
therefore constrained to sum to 1. 

*R. Szeliski, personal communication (1985). 
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Assuming that the weight values were generated from a gaussian mix- 
ture, the conditional probability that a particular weight, wi, was gener- 
ated by a particular gaussian, j ,  is called the responsibility of that gaussian 
for the weight and is given by 

(2.3) 

where pj(wi) is the probability density of wi under gaussian j .  
When the mixing proportions of the two gaussians are comparable, 

the narrow gaussian gets most of the responsibility for a small weight. 
Adopting the Bayesian perspective, the cost of a weight under the narrow 
gaussian is proportional to d /Zu ; .  As long as on is quite small there will 
be strong pressure to reduce the magnitude of small weights even further. 
Conversely, the broad gaussian takes most of the responsibility for large 
weight values, so there is much less pressure to reduce them. In the lim- 
iting case when the broad gaussian becomes a uniform distribution, there 
is almost no pressure to reduce very large weights because they are al- 
most certainly generated by the uniform distribution. A complexity term 
very similar to this limiting case has been used successfully by Weigend 
et al. (1990) to improve generalization for a time series prediction task.4 

There is an alternative justification for using a complexity term that 
is a mixture of a uniform distribution and a narrow, zero-mean gaussian. 
The negative log probability is approximately constant for large weights 
but smoothly approaches a much lower value as the weight approaches 
zero. So the complexity cost is a smoothed version of the obvious discrete 
cost function that has a value of zero for weights which are zero and a 
value of 1 for all other weights. This smoothed cost function is suitable 
for gradient descent learning, whereas the discrete one is not. 

3 Adaptive Gaussian Mixtures and Soft Weight-Sharing 

A mixture of a narrow, zero-mean gaussian with a broad gaussian or a 
uniform distribution allows us to favor networks with many near-zero 
weights, and this improves generalization on many tasks, particularly 
those in which there is some natural measure of locality that determines 
which units need to interact and which do not. But practical experience 
with hand-coded weight constraints has also shown that great improve- 
ments can be achieved by constraining particular subsets of the weights 
to share the same value (Lang et al. 1990; le Cun 1989). Mixtures of zero- 
mean gaussians and uniforms cannot implement this type of symmetry 
constraint. If however, we use multiple gaussians and allow their means 

3This is more commonly referred to as the posterior probability of gaussian j given 

4See Nowlan (1991) for a precise description of the relationship between mixture 
weight wi. 

models and the model used by Weigend ef al.  (1990). 
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and variances to adapt as the network learns, we can implement a "soft" 
version of weight-sharing in which the learning algorithm decides for 
itself which weights should be tied together. (We may also allow the 
mixing proportions to adapt so that we are not assuming all sets of tied 
weights are the same size.) 

If we know, in advance, that two connections should probably have 
the same weight, we can introduce a complexity penalty proportional 
to the squared difference between the two weights. But if we do not 
know which pairs of weights should be the same it is harder to see how 
to favor solutions in which the weights are divided into subsets and the 
weights within a subset are nearly identical. We now show that a mixture 
of gaussians model can achieve just this effect. The basic idea is that a 
gaussian that takes responsibility for a subset of the weights will squeeze 
those weights together since it can then have a lower variance and hence 
assign a higher probability density to each weight. If the gaussians all 
start with high variance, the initial division of weights into subsets will be 
very soft. As the variances shrink and the network learns, the decisions 
about how to group the weights into subsets are influenced by the task 
the network is learning to perform. 

4 An Update Algorithm 

To make the intuitive ideas of the previous section a bit more concrete, 
we may define a cost function of the general form given in (1.1): 

(4.1) 

where vi is the variance of the squared error and each ,q(w,) is a gaussian 
density with mean p, and standard deviation a,. We will optimize this 
function using some form of gradient descent to adjust the w, as well as 
the mixture parameters 7rl, pl ,  and al, and a,,.5 

The partial derivative of C with respect to each weight is the sum of 
the usual squared error derivative and a term due to the complexity cost 
for the weight: 

The derivative of the complexity cost term is simply a weighted sum of 
the difference between the weight value and the center of each of the 

"1/~7: may be thought of as playing the same role as X in equation 1.1 in determining 
a trade-off between the misfit and complexity costs. uy is re-estimated as learning 
proceeds so this trade-off is not constant. I< is a factor that adjusts for the effective 
number of degrees of freedom (or number of well determined parameters) in a problem. 
For the simulations described here its value was close to 1.0 and was determined by 
cross-validation. 
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gaussians. The weighting factors are the responsibility measures defined 
in equation 2.3 and if over time a single gaussian claims most of the 
responsibility for a particular weight the effect of the complexity cost term 
is simply to pull the weight toward the center of the responsible gaussian. 
The strength of this force is inversely proportional to the variance of the 
gaussian. Notice also that since the derivative of the complexity cost term 
is actually a sum of forces exerted by each gaussian, the net force exerted 
on the weight can be very small even when the forces exerted by some 
of the individual gaussians are quite large (e.g., a weight placed midway 
between two gaussians of equal variance has zero net force acting on 
it). This allows one to set up initial conditions in which each gaussian 
accounts quite well for at least some of the weights in the network, but 
the overall force on any weight due to the complexity term is negligible 
so the weights are initially driven primarily by the derivative of the data- 
misfit term. 

The partial derivatives of C with respect to the means and variances 
of the gaussians in the mixture have similar forms: 

(4.3) 

(4.4) 

The derivative for simply drives pj toward the weighted average of the 
set of weights gaussian j is responsible for. Similarly the derivative for a, 
drives it toward the weighted average of the squared deviations of these 
weights about l ~ j .  The derivation of the partial of C with respect to the 
mixing proportions is slightly less straightforward since we must worry 
about maintaining the constraint that the mixing proportions must sum 
to 1. Appropriate use of a Lagrange multiplier and a bit of algebraic 
manipulation leads to the simple expression: 

(4.5) 

Once again the result is intuitive; T, is moved toward the average respon- 
sibility of gaussian j for all of the weights. 

The partial derivatives of C with respect to each of the mixture pa- 
rameters are simple enough that, for fixed values of the responsibilities, 
the exact minimizer can be found analytically with ease (for example, 
the minimizer for equation 4.3 is simply pl = El  rl(wl)w,/ E, r,(wl)). This 
suggests that one could proceed by simply recomputing the rl(w,) after 
each weight update and setting the p l ,  ol, and xl to their exact minimizers 
given the current rl(wt). In fact the process of recomputing the v,(wt) and 
then setting all the parameters to their analytic minimizers corresponds to 
one iteration of the EM algorithm applied to mixture estimation (Demp- 
ster et al. 1977). This is a sensible and quite efficient algorithm to use for 



Simplifying Neural Networks 479 

estimating the mixture parameters when we are dealing with a stationary 
data distribution. However, in the case we are considering it is clear that 
the "data" we are modeling, the set of wi, does not have a stationary dis- 
tribution. In order to avoid stability problems, it is very important that 
the rate of change of our mixture parameters be tied to the rate of change 
of the weights themselves. For this reason, we choose to update all of 
the parameters (wi, pj, aj, T,) simultaneously using a conjugate gradient 
descent procedure.6 

Before considering applications of the method outlined above we need 
to consider briefly the issue of initializing all of our parameters appro- 
priately. It is well known that maximum likelihood methods for fitting 
mixtures can be very sensitive to poor initial conditions (McLachlan and 
Basford 1988). For example, if one component of a mixture initially has 
little responsibility for any of the weights in the network, its mixing pro- 
portion is driven rapidly toward zero and it is very difficult to recover 
from this situation. Fortunately, in the case of a network we usually 
know the initial weight distribution and so we can initialize the mixture 
appropriately. Commonly, we initialize the network weights so they are 
uniformly distributed over an interval [- W, w]. In this case we may 
initialize the means of the gaussians so they are spaced evenly over the 
interval [- W, w], and set all of the variances equal to the spacing be- 
tween adjacent means and the mixing proportions equal to each other. 
This ensures that each component in the mixture initially has the same 
total responsibility over the entire set of weights,' and also produces suf- 
ficient counterbalance between the forces from each gaussian so most of 
the weights in the network initially receive very little net force from the 
complexity measure. This initialization procedure is used for all of the 
simulations discussed in this paper. 

There is one additional trick used in the simulations discussed in this 
paper. The variances of the mixture components, a!, must of course be 
restricted to be positive and in addition if the variance of any compo- 
nent is allowed to approach 0 too closely the likelihood may become 
unbounded. To maintain the positivity constraint and at the same time 
make it difficult for the variance of a component to approach 0, we define 
the variance of the components in terms of a set of auxiliary variables: 

(4.6) 

where the value of rj is unrestricted. The gradient descent is performed 
on the set of 7, rather than directly on the aj.' 

6Any method of gradient descent could be used in the parameter update, however 
the conjugate gradient technique is quite fast and avoids the need to tune optimization 
parameters such as step size or momentum rate. 

7There is a minor edge effect for the two most extreme components. 
'The use of the -y, may be thought of simply as a technique for getting a better 

conditioned optimization problem. 



480 Steven J. Nowlan and Geoffrey E. Hinton 

Figure 1: Shift detection network used for generalization simulations. The 
output unit was connected to a bias unit and the 10 hidden units. Each hidden 
unit was connected to the bias unit and to 8 input units, 4 from the first block of 
10 inputs and the corresponding 4 in the second block of 10 inputs. The solid, 
dashed, and dotted lines show the group of input units connected to the first, 
second, and third hidden units, respectively. 

5 Results on a Toy Problem 

In this section, we report on some simulations which compare the gener- 
alization performance of networks trained using the cost criterion given 
in equation 4.1 to networks trained in three other ways: 

0 No cost term to penalize complexity. 

No explicit complexity cost term, but use of a validation set to 
terminate learning. 

0 The complexity cost term used by Weigend et al. (Weigend et al. 
(1 990h9 

The problem chosen for this comparison was a 20 input, one output 
shift detection network (see Fig. 1). The network had 20 input units, 10 
hidden units, and a single output unit and contained 101 weights. The 
first 10 input units in this network were given a random binary pattern, 
and the second group of 10 input units were given the same pattern 

~~~ 

'With a fixed value of X chosen by cross-validation. 
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Table 1: Summary of Generalization Performance of Five Different Training 
Techniques on the Shift Detection Problem. 

Method Train % correct Test % correct 
Backpropagation 100.0 f 0.0 67.3 f 5.7 
Cross-validation 98.8 f 1.1 83.5 i 5.1 
Weight decay 100.0 f 0.0 89.8 f 3.0 
Soft-share - 5 component 100.0 f 0.0 95.6 f 2.7 
Soft-share - 10 component 100.0 f 0.0 97.1 f 2.1 

circularly shifted by 1 bit left or right. The desired output of the network 
was fl for a left shift and -1 for a right shift. 

A data set of 2400 patterns was created by randomly generating a 10 
bit string, and choosing with equal probability to shift the string left or 
right.I0 The data set was divided into 100 training cases, 1000 validation 
cases, and 1300 test cases. The training set was deliberately chosen to 
be very small (< 5% of possible patterns) to explore the region in which 
complexity penalties should have the largest impact. 

Networks were trained with a conjugate gradient technique and, ex- 
cept for the networks trained using cross-validation, training was stopped 
as soon as 100% correct performance was achieved on the training set. 
For the networks trained with cross-validation, training was stopped 
when three consecutive weight updates" produced an increase in the er- 
ror on the validation set and the weights were then reset to the weights 
which achieved the lowest error on the validation set before testing for 
generalization. For the technique described in Weigend et al. (1990), 
X = 5.0 x lo-' in all simulations." Simulations using equation 4.1 were 
performed with gaussian mixtures containing 5 and 10 components. Each 
component had its own mean (pj), variance (of), and mixing proportion 
(7rj). The parameters of the mixture distribution were continuously rees- 
timated as the weights were changed as was the normalizing factor for 
the squared error by). 

Ten simulations were performed with each method, starting from ten 
different initial weight sets (i.e., each method used the same ten initial 
weight configurations). The simulation results are summarized in Table 1. 
The first column indicates the method used in training the network, while 
the second and third columns present the performance on the training 
and test sets respectively (plus or minus one standard deviation). 

'"Since there are only 2048 distinct cases, this set of 2400 did contain some duplicates. 
"A weight update refers to the final weight change accepted at the end of a single 

"This value was selected by performing simulations with X ranging between 1.0 x 
and choosing the value of X that gave the best performance on the 

line search. 

lo-' and 1.0 x 
cross-validation set. 
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All three methods which employ some form of weight modeling per- 
formed significantly better on the test set than networks trained using 
backpropagation without a complexity penalty ( p  >> 0.9999).13 The net- 
work trained with cross-validation also performs better than a network 
trained without a complexity penalty ( p  > 0.995). The two soft-sharing 
models perform better than cross-validation ( p  > 0.995 for the 5 compo- 
nent mixture, p > 0.999 for the 10 component mixture). The evidence that 
the form of weight decay of Weigend et al. is superior to cross-validation 
on this problem is very weak ( p  < 0.9). Finally, the two soft-sharing 
models are significantly better than the weight decay model ( p  > 0.999 
for the 10 component mixture and p > 0.99 for the 5 component mixture). 
The difference in the performance of the 5 and 10 component mixtures 
is not significant. 

A typical set of weights learned by the soft-sharing model with a 10 
component mixture is shown in Figure 2 and the final mixture density is 
shown in Figure 3. The weight model in this case contains four primary 
weight clusters: large magnitude positive and negative weights and small 
magnitude positive and negative weights. These four distinct classes may 
also be seen clearly in the weight diagram (Fig. 2). 

What is perhaps most interesting about the mixture probability den- 
sity shown in Figure 3 is that it does not have a significant component 
with mean 0. The classical assumption that the network contains a large 
number of inessential weights that can be eliminated to improve gener- 
alization is not appropriate for this problem and network architecture. 
This may explain why the weight decay model used by Weigend et al. 
(1990) performs relatively poorly in this situation. 

6 Results on a Real Problem 

The second task chosen to evaluate the effectiveness of the cost crite- 
rion of equation 4.1 was the prediction of the yearly sunspot average 
from the averages of previous years. This task has been well studied as 
a time-series prediction benchmark in the statistics literature (Priestley 
1991a,b) and has also been investigated by Weigend et al. (1990) using a 
cost criterion similar to the one discussed in Section 2. 

The network architecture used was identical to the one used in the 
study by Weigend et al. The network had 12 input units, which repre- 
sented the yearly average from the preceding 12 years, 8 hidden units, 
and a single output unit, which represented the prediction for the average 
number of sunspots in the current year. Yearly sunspot data from 1700 
to 1920 was used to train the network to perform this one-step prediction 
task, and the evaluation of the network was based on data from 1921 to 

'"All statistical comparisons are based on a t test with 19 degrees of freedom. p 
denotes the probability of rejecting the hypothesis that the two samples being compared 
have the same mean value. 
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..... . .  . .  

Figure 2: A diagram of weights discovered for the shift problem by a model 
which employed a 10 component mixture for the complexity cost. Black squares 
are negative weights and white squares are positive, with the size of the square 
proportional to the magnitude of the weight. Weights are shown for all 10 
hidden units. The bottom row of each block represents the bias, the next two 
rows are the weights from the 20 input units, and the top row is the weight to 
the output unit. 

1955.14 The evaluation of prediction performance used the average relative 
variance ( a m )  measure discussed in Weigend et al. (1990): 

&s(target, - prediction,)’ 
CkEs(targetk - means)* am(S) = (6.1) 

where S is a set of target values and means is the average of those target 
values. 

used in the previous section. Complexity measures based on gaussian 
mixtures with 3 and 8 components were used and 10 simulations were 
performed with each (using the same training data but different initial 
weight configurations). The results of these simulations are summa- 
rized in Table 2 along with the best result obtained by Weigend et al. 
(1990) (WRH), the bilinear autoregression model of Tong and Lim (1980) 

I4The authors wish to thank Andreas Weigend for providing his version of this data 
to work with. 

Simulations were performed using the same conjugate gradient method 
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Figure 3: Final mixture probability density for the set of weights shown in 
Figure 2. Five of the components in the mixture can be seen as distinct bumps 
in the probability density. Of the remaining five components, two have been 
eliminated by having their mixing proportions go to zero and the other three 
are very broad and form the baseline offset of the density function. 

(TAR),I5 and the multilayer RBF network of He and Lapedes (1991) (RBF). 
All figures represent the mu on the test set. For the mixture complexity 
models, this is the average over the 10 simulations, plus or minus one 
standard deviation. 

Since the results for the models other than the mixture complexity 
trained networks are based on a single simulation it is difficult to assign 
statistical significance to the differences shown in Table 2. We may note 
however, that the difference between the 3 and 8 component mixture 
complexity models is significant ( p  > 0.95) and the differences between 
the 8 component model and the other models are much larger. 

Weigend et a!. point out that for time series prediction tasks such as 
the sunspot task a much more interesting measure of performance is the 
ability of the model to predict more than one time step into the future. 

15This was the model favored by Priestley (1991a) in a recent evaluation of classical 
statistical approaches to this task. 



Simplifying Neural Networks 485 

Table 2: Summary of average relative variance of five different models on the 
one-step sunspot prediction problem. 

Method Test arv 
TAR 0.097 
RBF 0.092 
WRH 0.086 
Soft-share - 3 Comp. 0.077 f 0.0029 
Soft-share - 8 Comp. 0.072 f 0.0022 

One way to approach the multistep prediction problem is to use iterated 
single-step prediction. In this method, the predicted output is fed back as 
input for the next prediction and all other input units have their values 
shifted back one unit. Thus the input typically consists of a combination 
of actual and predicted values. 

We define the predicted value for time t, obtained after 1 iterations 
to be it,1. The prediction error will depend not only on I but also on 
the time ( t  - I )  when the iteration was started. In order to account for 
both effects, Weigend e f  al. suggested the average relative 1-times iterated 
prediction variance as a performance measure for iterated prediction: 

where M is the number of different start times for iterated prediction 
and 6 is the estimated standard deviation of the set of target values. In 
Figure 4 we plot this measure (computed over the test set from 1921 to 
1955) as a function of the number of prediction iterations for the simu- 
lations using the 3 and 8 component complexity measures, the Tong and 
Lim model (TAR), and the model from Weigend et al., which produced 
the lowest single step am (WRH). The plots for the 3 and 8 component 
complexity models are the averages over 10 simulations with the error 
bars indicating the plus or minus one standard deviation intervals. Once 
again, the differences between the 3 and 8 component models are signif- 
icant for all numbers of iterations. 

The differences between the adaptive gaussian complexity measure 
and the fixed complexity measure used by Weigend et al. are not as 
dramatic on the sunspot task as they were in the shift detection task. 
The explanation for this may be seen in Figures 5 and 6, which show a 
typical set of weights learned by the soft-sharing model with 8 mixture 
components and the corresponding final mixture probability density. The 
distinct weight groups seen clearly in the shift detection task (Fig. 2) are 
not as apparent in the weights for the sunspot task and the final weight 
distribution for the sunspot task is very smeared out except for one very 
strong sharp component near 0. It is clear that the fixed model assumed 
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Figure 4: Average relative I-times iterated prediction variance versus number 
of prediction iterations for the sunspot time series from 1921 to 1955. Closed 
circles represent the TAR model, open circles the WRH model, closed squares 
the 3 component complexity model, and open squares the 8 component com- 
plexity model. One deviation error bars are shown for the 3 and 8 component 
complexity models. 

by Weigend et al. is much more appropriate for the sunspot prediction 
task than it was for the shift detection task. 

7 A Minimum Description Length Perspective 

A number of authors have suggested that when attempting to approxi- 
mate an unknown function with some parametric approximation scheme 
(such as a network), the proper measure to optimize combines an esti- 
mate of the cost of the misfit with an estimate of the cost of describing the 
parametric approximation (Akaike 1973; Rissanen 1978; Barron and Bar- 
ron 1988). Such a measure is often referred to as a minimum description 



Simplifying Neural Networks 487 

Figure 5 A diagram of weights discovered for the sunspot prediction problem 
by a model which employed an 8 component mixture for the complexity cost. 
Weights are shown for all 8 hidden units. For each unit, the weights coming 
from the 12 inputs are shown in a row with the single weight to the output 
immediately above the row. The biases of the hidden units, which are not 
shown, were, with one exception, small negative numbers very close in value 
to most of the other weights in the network. The first three units in the left 
column all represent the simple rule that the number of sunspots depends on 
the number in the previous year. The last two units in this column compute a 
simple moving average. The three units on the right represent more interesting 
rules. The first captures the 11 year cycle, the second recognizes when a peak 
has just passed, and third appears to prevent the prediction from rising too 
soon if a peak happened 9 years ago and the recent activity is low. 

length criterion (MDL), and typically has the general form 

MDL = c - log p(message) + c - logp(parameter). 
messages parameters 

For a supervised network, the parameters are the weights and the mes- 
sages are the desired outputs. If we assume that the output errors are 
gaussian and that the weights are encoded using a mixture of gaussians 
probability model the description length is approximated by equation 4.1. 

The expression in equation 4.1 does not include the cost of encod- 
ing the means and variances of the mixture components or the mixing 
proportions of the mixture density. Since the mixture usually contains a 
small number of components (fewer than 10 usually) and there are only 
three parameters associated with each component, the cost of encod- 
ing these parameters is negligible compared to the cost of encoding the 
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Figure 6: Final mixture probability density for the set of weights shown in 
Figure 5. The density is dominated by a narrow component centered very near 
zero, with the remaining components blending into a skewed distribution with 
a peak around 0.5. 

weights in most networks of interest.16 In addition, since the number of 
components in the distribution does not change during the optimization, 
if the component parameters are all encoded with the same fixed preci- 
sion, the cost of the mixture parameters is simply a constant offset, which 
is ignored in the optimi~ation.'~ 

There is one important aspect of estimating the cost of describing a 
weight that we have ignored. We have assumed that the cost of a weight 
is the negative logarithm of a probability density function evaluated at 
the weight value, but this ignores the accuracy with which the weight 
must be described. We are really interested in the probability mass of a 
particular small interval of values for the parameter, and this means that 
we should integrate our density function over this interval to estimate 
the cost of each weight. We have implicitly assumed that this integration 

161n order to provide enough data to fit the mixture density, one should have an order 

"This ignores the possibility of not encoding the parameters of components whose 
of magnitude more weights than components in the mixture. 

mixing proportions approach 0. 
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region has the same (infinitesimal) width for every weight, and so the 
probability of a weight is simply proportional to the density function. 
This ignores the fact that most networks are generally much more sensi- 
tive to small changes in some weight values than others, so some weights 
need to be encoded more accurately than others.I8 

The sensitivity of a network to a small change in a weight is deter- 
mined by the curvature of the error surface. One could evaluate the 
curvature by computing the Hessian and make the width of the integra- 
tion region for each weight inversely proportional to the curvature along 
each weight dimension. To be perfectly accurate, one would need to in- 
tegrate the joint probability density function for all of the weights over a 
region determined by the complete Hessian (since the directions of max- 
imum curvature are often not perfectly aligned with the weight axes). 
This process would be computationally very costly, and an adequate ap- 
proximation might be obtainable by using a diagonal approximation to 
the Hessian and treating each weight independently (as advocated by 
le Cun et al. 1990). We see no reason why our method of estimating the 
probability density should not be combined with a method for estimating 
the integration interval. For small intervals, this is particularly easy since 
the probability mass is approximately the width of the interval times the 
height of the density function so these two terms are additive in the log 
probability domain. 

8 A Bayesian Perspective 

As a number of authors have recently pointed out (Weigend et al. 1991; 
Nowlan 1991; MacKay 1991; Buntine and Weigend 1991), equation 1.1 
can be derived from the principles of Bayesian inference. If we have a 
set of models MI, M2) . . . , which are competing to account for the data, 
Bayesian inference is concerned with how we should update our belief 
in the relative plausibility of each of these models in light of the data D. 
If P(M; I D )  is the plausibility of model M; given we have observed D, 
Bayes rule states 

where P ( D  I Mi) is a measure of how well model i predicts the data and 
P ( M , )  is our belief in the plausibility of model i before we have seen any 
data. Here P ( D )  is simply a normalizing factor to ensure our beliefs add 
up to one. If we are only interested in comparing alternate models, P ( D )  
can be ignored and in the log domain equation 8.1 becomes equation 
1.1 with the data-misfit cost equal to logP(D I Mi) and the complexity 

''Other things being equal, we should prefer networks in which the outputs are less 
sensitive to the precise weight values, since then the weight values can be encoded 
imprecisely without causing large output errors. 
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cost equal to logP(M,). If we are only considering a single network 
architecture, P(Mj) becomes a prior distribution over the set of possible 
weights.’’ 

What equation 8.1 highlights is that in the Bayesian framework our 
complexity cost should be independent of our data. This is certainly true 
when the complexity is the sum of the squares of the weights, and also 
holds for models such as the one used by Weigend et al. However, the 
mixture densities discussed in this paper are clearly not independent of 
the data and cannot be regarded as classical Bayesian priors. 

The complexity cost we are using corresponds more closely to a Bayes- 
ian hyperprior (Jaynes 1986; Gull 1988). We have specified a particular 
family of distributions from which the prior will be drawn but have 
left the parameters of the prior (T,, p,, a,) undetermined. Members of 
this family of distributions have the common feature of favoring sets of 
weights in which the weights in a set are clustered about a small number 
of values.20 When using a hyperprior, we can deal with the hyperparam- 
eters either by marginalizing over them (in effect, integrating them out) 
(Buntine and Weigend 19911, or by allowing the data (i.e., the weights) to 
determine their values a posteriori.” We have used this second approach, 
which is advocated by Gull (1988), who has shown that the use of such 
flexible hyperpriors can lead to considerable improvement in the quality 
of image reconstructions (Gull 1989; Skilling 1989) compared to the use 
of more classical priors. 

The trick of optimizing 7, rather than a, (discussed at the end of Sec- 
tion 4) may also be justified within the Bayesian framework. To estimate 
our hyperparameters, we should properly specify prior distributions for 
each. If these priors are uninformative:’ then the estimated values of the 
hyperparameters are determined entirely by the data. A parameter like 
a, is known as a scale parameter (it affects the width of the distribution) 
while parameters like pj are known as location parameters (they affect 
the position of the distribution). (See Jeffreys 1939 for further discus- 
sion.) An uninformative prior for a location parameter is uniform in the 
parameter, but an uninformative prior for a scale parameter is uniform in 
the log of the parameter ke., uniform in 7, rather than a,, Gull 1988). It 
is more consistent from this perspective to treat 7 and pj similarly, rather 
than u, and pj. 

”Much more interesting results are obtained when we apply this framework to mak- 
ing choices among many architectures, see MacKay for some elegant examples (MacKay 
1991). 

20The locations of these clusters will generally be different for different sets of weights. 
211n principle, both approaches will lead to the same posterior distribution over the 

weights and the same ultimate choice of weights for the network. The difference lies in 
whether we are searching over a joint space of weights and hyperparameters or using 
prior analytic ,simplifications to reduce the search to some manifold in weight space 
alone. 

=A prior that contains no initial bias except for a possible range constraint. 
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9 Summary 

The simulations we have described provide evidence that the use of a 
more sophisticated model for the distribution of weights in a network 
can lead to better generalization performance than a simpler form of 
weight decay, or techniques that control the learning time. The better 
generalization performance comes at the cost of greater complexity in 
the optimization of the weights. The effectiveness of the technique is 
likely to be somewhat problem dependent, but one advantage offered 
by the more sophisticated model is its ability to automatically adapt the 
model of the weight distribution to individual problems. 
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