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Review of Correlation 

One of the most important tools in time series analysis is the Auto-Correlation Function, or ACF. 

In these gentle, introductory lectures that were developed for a review of basic statistics, we have 

discussed descriptive measures, both analytical and graphical, as well as statistical inference. In 

this lecture, we complete our overview of required concepts by looking at a very popular way to 

measure the strength of linear association between two variables, the correlation coefficient. 

In your first probability or statistics course, you would have had an introduction to the ways in 

which we measure the strength of association of two variables. We’d guess that most people would 

first encounter the concept as the Pearson product moment correlation coefficient, often just called 

the correlation. Concepts like the Kullback–Leibler divergence probably come much later. 

Let’s start with the covariance concept. Recall that the variance of a single random variable is 

written, for the random variable  𝑋  as 

𝜎2 ≡ 𝑉[𝑋] ≡ 𝐸[ (𝑋 − 𝜇𝑥)(𝑋 − 𝜇𝑋) ] 

For a data set we’d estimate this as 

𝑠2 ≡
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)(𝑥𝑖 − �̅�) 

This is really just an average, with the  𝑛 − 1 term to boost the estimate a little bit (for those who 

like unbiased estimators). Take a square root for the standard deviation to return to original units. 

Now, if we have two random variables, we think about measuring their linear relationship with  

𝐶𝑂𝑉[𝑋, 𝑌] ≡ 𝐸[ (𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] 

And, for data, we form the analogous estimator 

𝑐𝑜𝑣 ≡
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) 

For motivation, we look at what happens “on average” (that’s the expected value operator,  𝐸[ ]) 

when we center the random variables, and then multiply these quantities together. Let’s think 

through graphically why this is a good idea.   
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Most reasonable people would say that the y values given in the graph at the left track long with 

the x values quite well. That isn’t true for the graph at the right. Another way of looking at this is 

to wonder whether a given y value can be decently well predicted by its corresponding x value.  

 

If you look at the first graph you will see that most of the above average x values go along with 

the above average y values. It is the same thing with the below average x values and the below 

average y values. Think about the deviations (distance from the mean). This means that 

 When 𝑥𝑖 − �̅� > 0  it is pretty common to find    𝑦𝑖 − �̅� > 0  as well. A positive times a 

positive is positive, so this means that   (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) > 0  is also greater than 0. 

 On the other side, when 𝑥𝑖 − �̅� < 0  it is pretty common to find    𝑦𝑖 − �̅� < 0  as well. A 

negative times a negative is negative, so this means that (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) > 0. 

 There aren’t many positive x values associated with negative y values. So there aren’t many 

terms where 𝑥𝑖 − �̅� > 0 and   𝑦𝑖 − �̅� < 0  . That means there aren’t many terms where          

(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) < 0. 

 Just to be complete, there aren’t many negative x values associated with positive y values. 

So there aren’t many terms where 𝑥𝑖 − �̅� < 0 and  𝑦𝑖 − �̅� > 0  . Again, that means there 

aren’t many terms where  (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) < 0. 
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Summing up, in the first graph most of the products (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) give positive numbers and 

we would expect the sum of these terms to take us pretty far in the positive direction. We’d 

therefore expect ∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) to be on the large side. 

When we move on to correlation, we are really just expressing the covariance concept in standard 

units. The motivation for this might be obvious- if we are measuring strength of linear association, 

we shouldn’t have to worry about whether we’ve measure in feet, in inches, or in miles.  

If we think about it in this way the defining formula for random variables should make sense: 

𝜌(𝑋, 𝑌) ≡ 𝐸 [(
𝑋 − 𝜇𝑋
𝜎𝑥

) (
𝑌 − 𝜇𝑌
𝜎𝑌

)] 

If we have data instead of random variables, we estimate this term in the most direct way as 

𝑟 ≡ �̂� ≡
1

𝑛 − 1
∑(

𝑥𝑖 − �̅�

𝑠𝑋
) (
𝑦𝑖 − �̅�

𝑠𝑌
) 

Remember the “sum of squares” notation as follows: 

𝑆𝑆𝑋 ≡∑(𝑥𝑖 − �̅�)
2 = ∑𝑥𝑖

2 −
1

𝑛
∑𝑥𝑖∑𝑥𝑖 

𝑆𝑆𝑌 ≡∑(𝑦𝑖 − �̅�)
2 = ∑𝑦𝑖

2 −
1

𝑛
∑𝑦𝑖∑𝑦𝑖 

𝑆𝑆𝑋𝑌 ≡ ∑𝑥𝑖  𝑦𝑖 −
1

𝑛
∑𝑥𝑖∑𝑦𝑖 

We can rewrite more compactly using “sum of squares” notation: 

1

𝑛 − 1
∑(

𝑥𝑖 − �̅�

𝑠𝑋
) (
𝑦𝑖 − �̅�

𝑠𝑌
) =

1

𝑛 − 1
∑

(

 
𝑥𝑖 − �̅�

√ 𝑆𝑆𝑋
𝑛 − 1)

 

(

 
𝑦𝑖 − �̅�

√ 𝑆𝑆𝑌
𝑛 − 1)

  

Cancel all those annoying  𝑛 − 1  terms, and pull constants through the sum: 

𝑟 = �̂� =∑(
𝑥𝑖 − �̅�

√𝑆𝑆𝑋
) (
𝑦𝑖 − �̅�

√𝑆𝑆𝑌
) =

1

√𝑆𝑆𝑋  𝑆𝑆𝑌 
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) =

𝑆𝑆𝑋𝑌

√𝑆𝑆𝑋√𝑆𝑆𝑌
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Girth, Height and Volume for Black Cherry Trees 

R has a nice data set on some physical characteristics of Black Cherry Trees. While most of us 

think about girth as the distance around something, here we find a simple scaling being used. 

This data set provides measurements of the girth, height and volume of timber in 31 felled 

black cherry trees. Note that girth is the diameter of the tree (in inches) measured at 4 ft 6 

in above the ground.  

It’s always natural to take a look at our data and we’ll do so with a “pairs” plot. 

pairs(trees, pch = 21, bg = c("red")) 

 

It appears that our variables are all positively correlated, as we’d expect. The linear relationship 

between Girth and Volume seems especially strong. You wouldn’t have come to that conclusion 

only looking at the covariances! 

cov(trees) 

Girth     Height     Volume 

Girth     9.847914  10.38333   49.88812 

Height   10.383333  40.60000   62.66000 

Volume  49.888118  62.66000  270.20280 

 

cor(trees) 

             Girth     Height     Volume 

Girth    1.0000000  0.5192801  0.9671194 

Height   0.5192801  1.0000000  0.5982497 

Volume  0.9671194  0.5982497  1.0000000 

 


