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Basic Statistics Review – Linear Regression 

At this point you should have at least a little experience with R and have had a brief review of 

some descriptive statistics. I have found that R makes easy things hard, but also makes hard 

things easy. We’ll try to make a few hard things easy in the context of simple inferential statistics 

and then move on to time series analysis in a more developed way. 

 

Objectives: 

Perform a simple linear regression with R 

 plot time series data 

 fit a linear model to a set of ordered pairs 

 assess normality of residuals 

 test whether the slope of the fitted line is zero 

 

Mauna Loa Atmospheric CO2 Concentration 

The basic R installation makes quite a few data sets available to us. We are interested in looking 

at atmospheric carbon dioxide concentration during some of the last several decades.  If you type 

co2 in the command window, you will see 

          Jan      Feb      Mar     … 

1959   315.42  316.31  316.50 … 

And so on. Starting from January of 1959, we see values of atmospheric concentrations together 

with when they occurred.  To obtain a description, type:  

help(co2) 

Atmospheric concentrations of Carbon Dioxide (CO2) are expressed in parts per million 

(ppm) and reported in the preliminary 1997 SIO manometric mole fraction scale.  

Now co2 is a “time series” object. This type of object will be hugely important to us moving 

forward. To verify that co2 is this type of object, type  
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class(co2)  

R will tell you that the class is "ts", or “time series”. This means that we have available to us data 

which occurs at equally spaced points in time. It includes observations together with a set of 

descriptions (start time of the series, end time, frequency, etc.). There are also available methods 

for operating on time series objects. We will worry about how to create ts objects later. For now, 

just enjoy the convenience of being able to type 

plot(co2, main='Atmospheric CO2 Concentration') 

R makes assumptions about how you would like to plot your time series data. You should see the 

following. 

 

CO2 concentration is apparently increasing with time over this period. Also, even though a 

straight line obviously misses some crucial behavior it isn’t entirely useless in that it can be used 

to model the trend in the data.  

We’ll follow the standard notational conventions and make a few minimal assumptions. 

 The response (i.e. co2 concentration) of the 𝑖𝑡ℎ observation may be denoted by the 

random variable  𝑌𝑖. 

 This response depends upon the explanatory variable 𝑥𝑖 in a linear way, with some noise 

added, as 

𝑌𝑖 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙 𝑝𝑙𝑢𝑠 𝑛𝑜𝑖𝑠𝑒 = ( 𝛽0 + 𝛽1𝑥𝑖) +  𝜖𝑖 
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The error term  𝜖𝑖 can arise in a variety of ways: measurement error, lack of knowledge of other 

important influences, etc. When doing a simple regression model, we make the (often 

reasonable!) assumptions that  

a) the errors are normally distributed and, on average, zero; 

b) the errors all have the same variance (they are homoscedastic), and  

c) the errors are unrelated to each other (they are independent across observations).  

Written mathematically (with the third assumption relaxed somewhat) for normally distributed 

errors 

𝐸[𝜖𝑖] =  0 

𝑉𝑎𝑟[𝜖𝑖] = 𝜎2{𝜖𝑖} =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝜎2 

𝐶𝑜𝑣[𝜖𝑖, 𝜖𝑗] = 𝜎{𝜖𝑖, 𝜖𝑗} = 0, ∀ 𝑖 ≠ 𝑗 

Even more compactly 

𝜖𝑖  
𝑖𝑖𝑑
∼

   𝑁(𝜇 = 0,   𝜎2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

Let’s make a distinction here, especially since this data set violates the assumptions we often 

make about the errors (which is why we find it interesting from a time series perspective!). When 

we find estimates of the slope and intercept using, for example Ordinary Least Squares (OLS), 

we are not really making any distributional assumptions, just taking a cloud of points and finding 

numbers that we call a slope and an intercept that minimize a quality term like 

𝑄 =  ∑(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2 

The observed value is what you have measured, the predicted value is sitting on your straight 

line. A common notation would be  

𝑌𝑖 = 𝑖𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑌̂𝑖 = 𝑖𝑡ℎ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑠𝑙𝑜𝑝𝑒 ⋅ 𝑥𝑖 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

Using linear algebra or calculus we can find formulas for the slope and intercept as 
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𝑠𝑙𝑜𝑝𝑒 = 𝑏1 =
𝑆𝑆𝑥𝑦

𝑆𝑆𝑥𝑥
=  

∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

∑(𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)
 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝑏0 = 𝑦̅ − 𝑏1 ⋅ 𝑥̅ 

If we wish to perform some inferences (confidence intervals, hypothesis tests), then we need to 

make distributional assumptions. 

We can calculate the slope and intercept values “by hand” as follows. First, to get the 

concentrations and times they were collected available to compute with, we can type 

co2.values = as.numeric(co2) 

co2.times = as.numeric( time(co2) ) 

SSxx  = sum(   (co2.times - mean(co2.times)  ) * (co2.times - mean(co2.times) ) ) 

SSxy  = sum(   (co2.values - mean(co2.values)  ) * (co2.times - mean(co2.times) ) ) 

( slope = SSxy / SSxx  ) 

( intercept = mean(co2.values) - slope*mean(co2.times)   ) 

You should have a slope of 1.307 and an intercept of  -2249.774. Obviously R will do all of this 

for us. We can create a linear model a little more simply with the command 

co2.linear.model = lm(co2 ~ time(co2) ) 

There is a nice R command to place your fitted line on the graph. Just run 

 plot(co2, main='Atmospheric CO2 Concentration with Fitted Line') 

abline(co2.linear.model ) 

If you’d like to compute your residuals by hand, you can calculate the fitted values and subtract 

them from your observed responses with a command like 

 co2.fitted.values = slope*co2.times + intercept 

co2.residuals = co2.values - co2.fitted.values 
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You might be a little lazier and would like R to do this for you. We “interrogate” the linear 

model with a command like 

 ( co2.residuals = resid( co2.linear.model ) ) 

 

Do you believe that the residuals are normally distributed? When we have a large data set we can 

look at a histogram. When a data set is smaller, we can look at a normal probability plot. Without 

worrying about the details of the plot construction right now, systematic departures from a 

straight line in a probability plot indicate likely departures from normality. It is also common to 

plot residuals against the time variable (or the predicted variable). 

Using the par() command to see these plots together, we can see a systematic departure from 

normality in the tails, along with an obvious structure in the time plot indicating departures from 

the standard regression assumptions.  

par(mfrow=c(1,3)) 

( c02.residuals = resid( co2.linear.model ) ) 

hist(co2.residuals, main= "Histogram of CO2 Residuals") 

qqnorm(c02.residuals, main= "Normal Probability Plot") 

qqline(c02.residuals) 

plot(c02.residuals ~ time(co2), main="Residuals on Time") 
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It seems silly not to also zoom in on the residuals using the “xlim” argument to see the 

seasonality in the data set. We will address the oscillations in the data later in the course. 

plot(c02.residuals ~ time(co2), xlim=c(1960, 1963), main="Zoomed in Residuals on Time") 
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Another Example 

A very famous data set was discussed in William Gossett’s (he’s better known as “Student”) 

classic paper The Probable Error of a Mean  (Student, 1908). Gossett describes an experiment in 

which two sleeping aides are administered during the course of a clinical trial to a group of 10 

research subjects. The average number of hours of sleep gained (called by the variable name 

“extra”) under the use of each of the two drugs (indicated by the variable name “group”) are 

recorded.  

 

When R starts it has a number of packages already loaded. This data set should be available to 

you just by typing, at the R command console,  

sleep 

Recorded for us is the extra sleep obtained as a consequence of taking the drug (“extra”), a label 

telling us which drug was taken (“group”), and a label for which of the 10 people we are talking 

about (“ID”). As always, to get look at the data and produce the default plot, first type sleep 

You should see 

extra   group   ID 

1     0.7       1    1 

2    -1.6       1    2 

… 

… 

20    3.4       2   10 

Plot your data with the command 

plot(extra~group, data=sleep, main = "Extra Sleep in Gossett Data by Group") 



Thistleton and Sadigov Reviewing Basic Statistics Week 1 

Practical Time Series Analysis  Page 8 

 

An obvious research question would be: Is there a difference in the average response to each of 

the two drugs?  Think about how you would have tested this in your elementary statistics class. 

We will automate the process with R.  

 

If you are tired of typing the dollar sign to access a variable, you can “attach” the data frame as 

attach(sleep) 

Now we can access the variables with a little less typing. Disaggregating the extra sleep data into 

variables specifying those who took drug 1 and those who took drug 2  

extra.1=extra[group==1] 

extra.2=extra[group==2] 

Run your t-test with the command 

t.test(extra.1, extra.2, paired=TRUE, alternative="two.sided") 

Since our goal is to review hypothesis testing in the context of R, we will be brief. The output is 

as follows: 

        Paired t-test 

 

data:  extra.1 and extra.2 

t = -4.0621, df = 9, p-value = 0.002833 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -2.4598858 -0.7001142 
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sample estimates: 

mean of the differences  

                  -1.58 

The statistic we have used is the Student-t for the paired differences 𝑥𝑑 = 𝑥 − 𝑦 

𝑡 =
𝑥̅𝑑 − 0
𝑠𝑑

√𝑛
⁄

 

The rather large negative t-value leads us to believe that the visual evidence in the box plot is 

supported by the statistical approach. The p-value is quite small and our data are significant at 

the customary 𝛼 = 0.01 level.   

𝑝 < 𝛼 ⇒ 𝑟𝑒𝑗𝑒𝑐𝑡 

The sample average difference obtained from these ten individuals estimates the population 

parameter  𝜇𝑑. An interval estimate provides a quality statement and is more interesting than the 

point estimate of  𝑥̅ − 𝑦̅ = −1.58.  At the 95% level of confidence we make the traditional 

statement that, whatever the actual difference in means, our interval estimate is  

95% 𝐶𝐼:    − 2.4598858 <  𝜇𝑑 < −0.7001142 

Of course, for the test to be meaningful, we assume that the population of differences is normally 

distributed.  

diffs = extra.1-extra.2 

qqnorm(diffs, main= "Normal Probability Plot") 

qqline(diffs) 
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While this is not a very sensitive test for normality, the hypothesis test itself is robust to 

departures from normality and, while that outlier is somewhat troubling, we can move forward.  

A Regression Model 

Let’s think about all this in another way. Since the data are paired (two different responses by 

same subject to each drug), it is natural to think of them in an (𝑥, 𝑦)  fashion and plot our data in 

a scatter plot. What do we observe? I typed 

plot(extra.2~extra.1, xlab='extra sleep with drug 1',  ylab='extra sleep with drug 2' ,  

main='Extra Sleep Drug 2 against Extra Sleep Drug 1') 

sleep.linear.model = lm(extra.2 ~ extra.1 ) 

abline(sleep.linear.model) 
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We have changed our focus from (a) deciding whether the group averages differ to (b) thinking 

about whether we might say something about a person’s response to the second drug given their 

response to the first drug. Aside from the one pesky data point (subject 9) it looks like we might 

be able to do a decent job.  

So, in this context we might think about performing a regression of  𝑑𝑟𝑢𝑔2 response on 𝑑𝑟𝑢𝑔1 

response.  

 

You should feel pretty comfortable with the analysis at this point.  

 Estimate a slope and an intercept 

 Plot your data with the fitted line. Look for outliers and other violations of our 

assumptions. 

 Examine your residuals to assess normalcy. 

 Perform any tests you feel are important. 

 

Off we go! We’ve already plotted and fitted.  Here is the normal probability plot for the 

residuals. We still have that one annoying data point. 

 

summary(sleep.linear.model) 

 

Call: 

lm(formula = extra.2 ~ extra.1) 

 

Residuals: 
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    Min       1Q    Median       3Q       Max  

-1.6735  -0.4673  -0.3365   0.3979   2.9375  

 

Coefficients: 

             Estimate  Std. Error  t value   Pr(>|t|)    

(Intercept)   1.6625      0.4452    3.734    0.00575 ** 

extra.1       0.8899       0.2399    3.709    0.00596 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.288 on 8 degrees of freedom 

Multiple R-squared:  0.6323,    Adjusted R-squared:  0.5863  

F-statistic: 13.76 on 1 and 8 DF,  p-value: 0.005965 

 

Our model is then 

𝑒𝑥𝑡𝑟𝑎. 2 =  0.8899 ⋅ 𝑒𝑥𝑡𝑟𝑎. 1 + 1.6625       

 

On the standard test of whether the slope is zero, our p-value is 0.00596 < .01 and so we believe 

the slope is not zero (at, say, the   α = 0.01 los) 

 

 See if you feel comfortable answering the following questions. 

 

1. What do you predict for sleep gained with drug 2 if you know the sleep gained with drug 

1 is 2 hours?   

 

3.4423 hours = 0.8899*2+1.6625 

 

2. What is the residual associated with the 3rd data point?   

 

extra.2[3]  - (0.8899*extra.1[3]+1.6625 = -0.38452 

alternatively 
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residuals = resid(sleep.linear.model)  

residuals[3] 
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