
Chapter 13

Policy Gradient Methods

In this chapter we consider something new. So far in this book almost all the methods
have been action-value methods; they learned the values of actions and then selected
actions based on their estimated action values1; their policies would not even exist without
the action-value estimates. In this chapter we consider methods that instead learn a
parameterized policy that can select actions without consulting a value function. A value
function may still be used to learn the policy parameter, but is not required for action
selection. We use the notation ✓ 2 Rd

0
for the policy’s parameter vector. Thus we write

⇡(a|s, ✓) = Pr{At =a | St =s, ✓t =✓} for the probability that action a is taken at time t
given that the environment is in state s at time t with parameter ✓. If a method uses a
learned value function as well, then the value function’s weight vector is denoted w 2 Rd

as usual, as in v̂(s,w).
In this chapter we consider methods for learning the policy parameter based on the

gradient of some scalar performance measure J(✓) with respect to the policy parameter.
These methods seek to maximize performance, so their updates approximate gradient
ascent in J :

✓t+1 = ✓t + ↵ \rJ(✓t), (13.1)

where \rJ(✓t) 2 Rd
0
is a stochastic estimate whose expectation approximates the gradient

of the performance measure with respect to its argument ✓t. All methods that follow
this general schema we call policy gradient methods, whether or not they also learn an
approximate value function. Methods that learn approximations to both policy and value
functions are often called actor–critic methods, where ‘actor’ is a reference to the learned
policy, and ‘critic’ refers to the learned value function, usually a state-value function.
First we treat the episodic case, in which performance is defined as the value of the start
state under the parameterized policy, before going on to consider the continuing case, in

1The lone exception is the gradient bandit algorithms of Section 2.8. In fact, that section goes through
many of the same steps, in the single-state bandit case, as we go through here for full MDPs. Reviewing
that section would be good preparation for fully understanding this chapter.

322 Chapter 13: Policy Gradient Methods

which performance is defined as the average reward rate, as in Section 10.3. In the end,
we are able to express the algorithms for both cases in very similar terms.

13.1 Policy Approximation and its Advantages

In policy gradient methods, the policy can be parameterized in any way, as long as
⇡(a|s, ✓) is di↵erentiable with respect to its parameters, that is, as long as r⇡(a|s, ✓) (the
column vector of partial derivatives of ⇡(a|s, ✓) with respect to the components of ✓) exists
and is finite for all s 2 S, a 2 A(s), and ✓ 2 Rd

0
. In practice, to ensure exploration we

generally require that the policy never becomes deterministic (i.e., that ⇡(a|s, ✓) 2 (0, 1),
for all s, a, ✓). In this section we introduce the most common parameterization for
discrete action spaces and point out the advantages it o↵ers over action-value methods.
Policy-based methods also o↵er useful ways of dealing with continuous action spaces, as
we describe later in Section 13.7.

If the action space is discrete and not too large, then a natural and common kind of
parameterization is to form parameterized numerical preferences h(s, a, ✓) 2 R for each
state–action pair. The actions with the highest preferences in each state are given the
highest probabilities of being selected, for example, according to an exponential soft-max
distribution:

⇡(a|s, ✓)
.
=

eh(s,a,✓)

P
b
eh(s,b,✓)

, (13.2)

where e ⇡ 2.71828 is the base of the natural logarithm. Note that the denominator here
is just what is required so that the action probabilities in each state sum to one. We call
this kind of policy parameterization soft-max in action preferences.

The action preferences themselves can be parameterized arbitrarily. For example, they
might be computed by a deep artificial neural network (ANN), where ✓ is the vector
of all the connection weights of the network (as in the AlphaGo system described in
Section 16.6). Or the preferences could simply be linear in features,

h(s, a, ✓) = ✓>x(s, a), (13.3)

using feature vectors x(s, a) 2 Rd
0

constructed by any of the methods described in
Section 9.5.

One advantage of parameterizing policies according to the soft-max in action preferences
is that the approximate policy can approach a deterministic policy, whereas with "-greedy
action selection over action values there is always an " probability of selecting a random
action. Of course, one could select according to a soft-max distribution based on action
values, but this alone would not allow the policy to approach a deterministic policy.
Instead, the action-value estimates would converge to their corresponding true values,
which would di↵er by a finite amount, translating to specific probabilities other than 0 and
1. If the soft-max distribution included a temperature parameter, then the temperature
could be reduced over time to approach determinism, but in practice it would be di�cult
to choose the reduction schedule, or even the initial temperature, without more prior
knowledge of the true action values than we would like to assume. Action preferences

13.1. Policy Approximation and its Advantages 323

are di↵erent because they do not approach specific values; instead they are driven to
produce the optimal stochastic policy. If the optimal policy is deterministic, then the
preferences of the optimal actions will be driven infinitely higher than all suboptimal
actions (if permitted by the parameterization).

A second advantage of parameterizing policies according to the soft-max in action
preferences is that it enables the selection of actions with arbitrary probabilities. In
problems with significant function approximation, the best approximate policy may be
stochastic. For example, in card games with imperfect information the optimal play is
often to do two di↵erent things with specific probabilities, such as when blu�ng in Poker.
Action-value methods have no natural way of finding stochastic optimal policies, whereas
policy approximating methods can, as shown in Example 13.1.

Example 13.1 Short corridor with switched actions

Consider the small corridor gridworld shown inset in the graph below. The reward
is �1 per step, as usual. In each of the three nonterminal states there are only
two actions, right and left. These actions have their usual consequences in the
first and third states (left causes no movement in the first state), but in the
second state they are reversed, so that right moves to the left and left moves to
the right. The problem is di�cult because all the states appear identical under
the function approximation. In particular, we define x(s, right) = [1, 0]> and
x(s, left) = [0, 1]>, for all s. An action-value method with "-greedy action selection
is forced to choose between just two policies: choosing right with high probability
1 � "/2 on all steps or choosing left with the same high probability on all time
steps. If " = 0.1, then these two policies achieve a value (at the start state)
of less than �44 and �82, respectively, as shown in the graph. A method can
do significantly better if it can learn a specific probability with which to select
right. The best probability is about 0.59, which achieves a value of about �11.6.

probability of right action

-11.6

0.1 0.2

-20

-40

-60

-80

-100
0.3 0.40 0.6 0.7 0.8 0.90.5 1

�-greedy left

�-greedy right

optimal
stochastic

policy

J(✓) = v⇡✓ (S)

GS

324 Chapter 13: Policy Gradient Methods

Perhaps the simplest advantage that policy parameterization may have over action-
value parameterization is that the policy may be a simpler function to approximate.
Problems vary in the complexity of their policies and action-value functions. For some,
the action-value function is simpler and thus easier to approximate. For others, the policy
is simpler. In the latter case a policy-based method will typically learn faster and yield a
superior asymptotic policy (as in Tetris; see Şimşek, Algórta, and Kothiyal, 2016).

Finally, we note that the choice of policy parameterization is sometimes a good way
of injecting prior knowledge about the desired form of the policy into the reinforcement
learning system. This is often the most important reason for using a policy-based learning
method.

Exercise 13.1 Use your knowledge of the gridworld and its dynamics to determine an
exact symbolic expression for the optimal probability of selecting the right action in
Example 13.1. ⇤

13.2 The Policy Gradient Theorem

In addition to the practical advantages of policy parameterization over "-greedy action
selection, there is also an important theoretical advantage. With continuous policy
parameterization the action probabilities change smoothly as a function of the learned
parameter, whereas in "-greedy selection the action probabilities may change dramatically
for an arbitrarily small change in the estimated action values, if that change results in a
di↵erent action having the maximal value. Largely because of this, stronger convergence
guarantees are available for policy-gradient methods than for action-value methods. In
particular, it is the continuity of the policy dependence on the parameters that enables
policy-gradient methods to approximate gradient ascent (13.1).

The episodic and continuing cases define the performance measure, J(✓), di↵erently
and thus have to be treated separately to some extent. Nevertheless, we will try to
present both cases uniformly, and we develop a notation so that the major theoretical
results can be described with a single set of equations.

In this section we treat the episodic case, for which we define the performance measure
as the value of the start state of the episode. We can simplify the notation without
losing any meaningful generality by assuming that every episode starts in some particular
(non-random) state s0. Then, in the episodic case we define performance as

J(✓)
.
= v⇡✓ (s0), (13.4)

where v⇡✓ is the true value function for ⇡✓, the policy determined by ✓. From here on in
our discussion we will assume no discounting (� = 1) for the episodic case, although for
completeness we do include the possibility of discounting in the boxed algorithms.

With function approximation it may seem challenging to change the policy parameter
in a way that ensures improvement. The problem is that performance depends on both
the action selections and the distribution of states in which those selections are made,
and that both of these are a↵ected by the policy parameter. Given a state, the e↵ect of
the policy parameter on the actions, and thus on reward, can be computed in a relatively
straightforward way from knowledge of the parameterization. But the e↵ect of the policy

13.2. The Policy Gradient Theorem 325

Proof of the Policy Gradient Theorem (episodic case)

With just elementary calculus and re-arranging of terms, we can prove the policy
gradient theorem from first principles. To keep the notation simple, we leave it
implicit in all cases that ⇡ is a function of ✓, and all gradients are also implicitly
with respect to ✓. First note that the gradient of the state-value function can be
written in terms of the action-value function as

rv⇡(s) = r
"
X

a

⇡(a|s)q⇡(s, a)

#
, for all s 2 S (Exercise 3.18)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)rq⇡(s, a)

i
(product rule of calculus)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)r

X

s0,r

p(s0, r |s, a)
�
r + v⇡(s0)

�i

(Exercise 3.19 and Equation 3.2)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)

X

s0

p(s0 |s, a)rv⇡(s0)
i

(Eq. 3.4)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)

X

s0

p(s0 |s, a) (unrolling)

X

a0

⇥
r⇡(a0|s0)q⇡(s0, a0) + ⇡(a0|s0)

X

s00

p(s00 |s0, a0)rv⇡(s00)
⇤i

=
X

x2S

1X

k=0

Pr(s!x, k, ⇡)
X

a

r⇡(a|x)q⇡(x, a),

after repeated unrolling, where Pr(s!x, k, ⇡) is the probability of transitioning
from state s to state x in k steps under policy ⇡. It is then immediate that

rJ(✓) = rv⇡(s0)

=
X

s

 1X

k=0

Pr(s0!s, k, ⇡)

!
X

a

r⇡(a|s)q⇡(s, a)

=
X

s

⌘(s)
X

a

r⇡(a|s)q⇡(s, a) (box page 199)

=
X

s0

⌘(s0)
X

s

⌘(s)P
s0 ⌘(s0)

X

a

r⇡(a|s)q⇡(s, a)

=
X

s0

⌘(s0)
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a) (Eq. 9.3)

/
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a) (Q.E.D.)

326 Chapter 13: Policy Gradient Methods

on the state distribution is a function of the environment and is typically unknown. How
can we estimate the performance gradient with respect to the policy parameter when the
gradient depends on the unknown e↵ect of policy changes on the state distribution?

Fortunately, there is an excellent theoretical answer to this challenge in the form of
the policy gradient theorem, which provides an analytic expression for the gradient of
performance with respect to the policy parameter (which is what we need to approximate
for gradient ascent (13.1)) that does not involve the derivative of the state distribution.
The policy gradient theorem for the episodic case establishes that

rJ(✓) /
X

s

µ(s)
X

a

q⇡(s, a)r⇡(a|s, ✓), (13.5)

where the gradients are column vectors of partial derivatives with respect to the compo-
nents of ✓, and ⇡ denotes the policy corresponding to parameter vector ✓. The symbol /
here means “proportional to”. In the episodic case, the constant of proportionality is the
average length of an episode, and in the continuing case it is 1, so that the relationship is
actually an equality. The distribution µ here (as in Chapters 9 and 10) is the on-policy
distribution under ⇡ (see page 199). The policy gradient theorem is proved for the
episodic case in the box on the previous page.

13.3 REINFORCE: Monte Carlo Policy Gradient

We are now ready to derive our first policy-gradient learning algorithm. Recall our overall
strategy of stochastic gradient ascent (13.1), which requires a way to obtain samples such
that the expectation of the sample gradient is proportional to the actual gradient of the
performance measure as a function of the parameter. The sample gradients need only be
proportional to the gradient because any constant of proportionality can be absorbed
into the step size ↵, which is otherwise arbitrary. The policy gradient theorem gives an
exact expression proportional to the gradient; all that is needed is some way of sampling
whose expectation equals or approximates this expression. Notice that the right-hand
side of the policy gradient theorem is a sum over states weighted by how often the states
occur under the target policy ⇡; if ⇡ is followed, then states will be encountered in these
proportions. Thus

rJ(✓) /
X

s

µ(s)
X

a

q⇡(s, a)r⇡(a|s, ✓)

= E⇡

"
X

a

q⇡(St, a)r⇡(a|St, ✓)

#
. (13.6)

We could stop here and instantiate our stochastic gradient-ascent algorithm (13.1) as

✓t+1

.
= ✓t + ↵

X

a

q̂(St, a,w)r⇡(a|St, ✓), (13.7)

where q̂ is some learned approximation to q⇡. This algorithm, which has been called
an all-actions method because its update involves all of the actions, is promising and

13.3. REINFORCE: Monte Carlo Policy Gradient 327

deserving of further study, but our current interest is the classical REINFORCE algorithm
(Willams, 1992) whose update at time t involves just At, the one action actually taken at
time t.

We continue our derivation of REINFORCE by introducing At in the same way as we
introduced St in (13.6)—by replacing a sum over the random variable’s possible values
by an expectation under ⇡, and then sampling the expectation. Equation (13.6) involves
an appropriate sum over actions, but each term is not weighted by ⇡(a|St, ✓) as is needed
for an expectation under ⇡. So we introduce such a weighting, without changing the
equality, by multiplying and then dividing the summed terms by ⇡(a|St, ✓). Continuing
from (13.6), we have

rJ(✓) / E⇡

"
X

a

⇡(a|St, ✓)q⇡(St, a)
r⇡(a|St, ✓)

⇡(a|St, ✓)

#

= E⇡

q⇡(St, At)

r⇡(At|St, ✓)

⇡(At|St, ✓)

�
(replacing a by the sample At ⇠ ⇡)

= E⇡

Gt

r⇡(At|St, ✓)

⇡(At|St, ✓)

�
, (because E⇡[Gt|St, At] = q⇡(St, At))

where Gt is the return as usual. The final expression in brackets is exactly what is needed,
a quantity that can be sampled on each time step whose expectation is proportional
to the gradient. Using this sample to instantiate our generic stochastic gradient ascent
algorithm (13.1) yields the REINFORCE update:

✓t+1

.
= ✓t + ↵Gt

r⇡(At|St, ✓t)

⇡(At|St, ✓t)
. (13.8)

This update has an intuitive appeal. Each increment is proportional to the product of a
return Gt and a vector, the gradient of the probability of taking the action actually taken
divided by the probability of taking that action. The vector is the direction in parameter
space that most increases the probability of repeating the action At on future visits
to state St. The update increases the parameter vector in this direction proportional
to the return, and inversely proportional to the action probability. The former makes
sense because it causes the parameter to move most in the directions that favor actions
that yield the highest return. The latter makes sense because otherwise actions that are
selected frequently are at an advantage (the updates will be more often in their direction)
and might win out even if they do not yield the highest return.

Note that REINFORCE uses the complete return from time t, which includes all
future rewards up until the end of the episode. In this sense REINFORCE is a Monte
Carlo algorithm and is well defined only for the episodic case with all updates made in
retrospect after the episode is completed (like the Monte Carlo algorithms in Chapter 5).
This is shown explicitly in the boxed algorithm on the next page.

Notice that the update in the last line of pseudocode appears rather di↵erent from
the REINFORCE update rule (13.8). One di↵erence is that the pseudocode uses the

compact expression r ln ⇡(At|St, ✓t) for the fractional vector r⇡(At|St,✓t)

⇡(At|St,✓t)
in (13.8). That

these two expressions for the vector are equivalent follows from the identity r ln x = rx

x
.

328 Chapter 13: Policy Gradient Methods

This vector has been given several names and notations in the literature; we will refer
to it simply as the eligibility vector. Note that it is the only place that the policy
parameterization appears in the algorithm.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Algorithm parameter: step size ↵ > 0
Initialize policy parameter ✓ 2 Rd

0
(e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G
P

T

k=t+1
�k�t�1Rk (Gt)

✓ ✓ + ↵�tGr ln ⇡(At|St, ✓)

The second di↵erence between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of �t. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (� =1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.
⇤Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of �t and thus aligns with
the general algorithm given in the pseudocode. ⇤

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

↵ = 2�13

↵ = 2�12

Episode
10008006004002001

-80

-90

-60

-40

-20

-10

Total reward
on episode

averaged over 100 runs

G0

v⇤(s0)

↵ = 2�14

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

13.4. REINFORCE with Baseline 329

As a stochastic gradient method, REINFORCE has good theoretical convergence
properties. By construction, the expected update over an episode is in the same direction
as the performance gradient. This assures an improvement in expected performance for
su�ciently small ↵, and convergence to a local optimum under standard stochastic approx-
imation conditions for decreasing ↵. However, as a Monte Carlo method REINFORCE
may be of high variance and thus produce slow learning.

Exercise 13.3 In Section 13.1 we considered policy parameterizations using the soft-max in
action preferences (13.2) with linear action preferences (13.3). For this parameterization,
prove that the eligibility vector is

r ln ⇡(a|s, ✓) = x(s, a)�
X

b

⇡(b|s, ✓)x(s, b), (13.9)

using the definitions and elementary calculus. ⇤

13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of the
action value to an arbitrary baseline b(s):

rJ(✓) /
X

s

µ(s)
X

a

⇣
q⇡(s, a)� b(s)

⌘
r⇡(a|s, ✓). (13.10)

The baseline can be any function, even a random variable, as long as it does not vary
with a; the equation remains valid because the subtracted quantity is zero:

X

a

b(s)r⇡(a|s, ✓) = b(s)r
X

a

⇡(a|s, ✓) = b(s)r1 = 0.

The policy gradient theorem with baseline (13.10) can be used to derive an update
rule using similar steps as in the previous section. The update rule that we end up with
is a new version of REINFORCE that includes a general baseline:

✓t+1

.
= ✓t + ↵

⇣
Gt � b(St)

⌘r⇡(At|St, ✓t)

⇡(At|St, ✓t)
. (13.11)

Because the baseline could be uniformly zero, this update is a strict generalization of
REINFORCE. In general, the baseline leaves the expected value of the update unchanged,
but it can have a large e↵ect on its variance. For example, we saw in Section 2.8 that an
analogous baseline can significantly reduce the variance (and thus speed the learning) of
gradient bandit algorithms. In the bandit algorithms the baseline was just a number (the
average of the rewards seen so far), but for MDPs the baseline should vary with state.
In some states all actions have high values and we need a high baseline to di↵erentiate
the higher valued actions from the less highly valued ones; in other states all actions will
have low values and a low baseline is appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where
w 2 Rd is a weight vector learned by one of the methods presented in previous chapters.

330 Chapter 13: Policy Gradient Methods

Because REINFORCE is a Monte Carlo method for learning the policy parameter, ✓,
it seems natural to also use a Monte Carlo method to learn the state-value weights, w.
A complete pseudocode algorithm for REINFORCE with baseline using such a learned
state-value function as the baseline is given in the box below.

REINFORCE with Baseline (episodic), for estimating ⇡✓ ⇡ ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Input: a di↵erentiable state-value function parameterization v̂(s,w)
Algorithm parameters: step sizes ↵✓ > 0, ↵w > 0
Initialize policy parameter ✓ 2 Rd

0
and state-value weights w 2 Rd (e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G
P

T

k=t+1
�k�t�1Rk (Gt)

� G� v̂(St,w)
w w + ↵w �rv̂(St,w)
✓ ✓ + ↵✓ �t �r ln ⇡(At|St, ✓)

This algorithm has two step sizes, denoted ↵✓ and ↵w (where ↵✓ is the ↵ in (13.11)).
Choosing the step size for values (here ↵w) is relatively easy; in the linear case we have
rules of thumb for setting it, such as ↵w = 0.1/E

⇥
krv̂(St,w)k2

µ

⇤
(see Section 9.6). It is

much less clear how to set the step size for the policy parameters, ↵✓, whose best value
depends on the range of variation of the rewards and on the policy parameterization.

↵ = 2�13

Episode
10008006004002001

-80

-90

-60

-40

-20

-10 v⇤(s0)

REINFORCE

REINFORCE with baseline
↵ = 2�9

↵✓ = 2�9, ↵w = 2�6

Total reward
on episode

averaged over 100 runs

G0

Figure 13.2: Adding a baseline to REINFORCE can make it learn much faster, as illus-
trated here on the short-corridor gridworld (Example 13.1). The step size used here for plain
REINFORCE is that at which it performs best (to the nearest power of two; see Figure 13.1).

13.5. Actor–Critic Methods 331

Figure 13.2 compares the behavior of REINFORCE with and without a baseline on
the short-corridor gridword (Example 13.1). Here the approximate state-value function
used in the baseline is v̂(s,w) = w. That is, w is a single component, w.

13.5 Actor–Critic Methods

In REINFORCE with baseline, the learned state-value function estimates the value of
the first state of each state transition. This estimate sets a baseline for the subsequent
return, but is made prior to the transition’s action and thus cannot be used to assess that
action. In actor–critic methods, on the other hand, the state-value function is applied
also to the second state of the transition. The estimated value of the second state, when
discounted and added to the reward, constitutes the one-step return, Gt:t+1, which is a
useful estimate of the actual return and thus is a way of assessing the action. As we have
seen in the TD learning of value functions throughout this book, the one-step return is
often superior to the actual return in terms of its variance and computational congeniality,
even though it introduces bias. We also know how we can flexibly modulate the extent
of the bias with n-step returns and eligibility traces (Chapters 7 and 12). When the
state-value function is used to assess actions in this way it is called a critic, and the
overall policy-gradient method is termed an actor–critic method. Note that the bias in
the gradient estimate is not due to bootstrapping as such; the actor would be biased even
if the critic was learned by a Monte Carlo method.

First consider one-step actor–critic methods, the analog of the TD methods introduced
in Chapter 6 such as TD(0), Sarsa(0), and Q-learning. The main appeal of one-step
methods is that they are fully online and incremental, yet avoid the complexities of
eligibility traces. They are a special case of the eligibility trace methods, but easier
to understand. One-step actor–critic methods replace the full return of REINFORCE
(13.11) with the one-step return (and use a learned state-value function as the baseline)
as follows:

✓t+1

.
= ✓t + ↵

⇣
Gt:t+1 � v̂(St,w)

⌘r⇡(At|St, ✓t)

⇡(At|St, ✓t)
(13.12)

= ✓t + ↵
⇣
Rt+1 + �v̂(St+1,w)� v̂(St,w)

⌘r⇡(At|St, ✓t)

⇡(At|St, ✓t)
(13.13)

= ✓t + ↵�t

r⇡(At|St, ✓t)

⇡(At|St, ✓t)
. (13.14)

The natural state-value-function learning method to pair with this is semi-gradient TD(0).
Pseudocode for the complete algorithm is given in the box at the top of the next page.
Note that it is now a fully online, incremental algorithm, with states, actions, and rewards
processed as they occur and then never revisited.

332 Chapter 13: Policy Gradient Methods

One-step Actor–Critic (episodic), for estimating ⇡✓ ⇡ ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Input: a di↵erentiable state-value function parameterization v̂(s,w)
Parameters: step sizes ↵✓ > 0, ↵w > 0
Initialize policy parameter ✓ 2 Rd

0
and state-value weights w 2 Rd (e.g., to 0)

Loop forever (for each episode):
Initialize S (first state of episode)
I 1
Loop while S is not terminal (for each time step):

A ⇠ ⇡(·|S, ✓)
Take action A, observe S0, R
� R + � v̂(S0,w)� v̂(S,w) (if S0 is terminal, then v̂(S0,w)

.
= 0)

w w + ↵w �rv̂(S,w)
✓ ✓ + ↵✓ I �r ln ⇡(A|S, ✓)
I �I
S S0

The generalizations to the forward view of n-step methods and then to a �-return
algorithm are straightforward. The one-step return in (13.12) is merely replaced by Gt:t+n

or G�

t
respectively. The backward view of the �-return algorithm is also straightforward,

using separate eligibility traces for the actor and critic, each after the patterns in
Chapter 12. Pseudocode for the complete algorithm is given in the box below.

Actor–Critic with Eligibility Traces (episodic), for estimating ⇡✓ ⇡ ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Input: a di↵erentiable state-value function parameterization v̂(s,w)
Parameters: trace-decay rates �✓ 2 [0, 1], �w 2 [0, 1]; step sizes ↵✓ > 0, ↵w > 0
Initialize policy parameter ✓ 2 Rd

0
and state-value weights w 2 Rd (e.g., to 0)

Loop forever (for each episode):
Initialize S (first state of episode)
z✓ 0 (d0-component eligibility trace vector)
zw 0 (d-component eligibility trace vector)
I 1
Loop while S is not terminal (for each time step):

A ⇠ ⇡(·|S, ✓)
Take action A, observe S0, R
� R + � v̂(S0,w)� v̂(S,w) (if S0 is terminal, then v̂(S0,w)

.
= 0)

zw ��wzw +rv̂(S,w)
z✓ ��✓z✓ + Ir ln ⇡(A|S, ✓)
w w + ↵w �zw

✓ ✓ + ↵✓ �z✓

I �I
S S0

13.6. Policy Gradient for Continuing Problems 333

13.6 Policy Gradient for Continuing Problems

As discussed in Section 10.3, for continuing problems without episode boundaries we need
to define performance in terms of the average rate of reward per time step:

J(✓)
.
= r(⇡)

.
= lim

h!1

1

h

hX

t=1

E[Rt | S0, A0:t�1⇠⇡] (13.15)

= lim
t!1

E[Rt | S0, A0:t�1⇠⇡]

=
X

s

µ(s)
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)r,

where µ is the steady-state distribution under ⇡, µ(s)
.
= limt!1 Pr{St =s|A0:t⇠⇡},

which is assumed to exist and to be independent of S0 (an ergodicity assumption).
Remember that this is the special distribution under which, if you select actions according
to ⇡, you remain in the same distribution:

X

s

µ(s)
X

a

⇡(a|s, ✓)p(s0 |s, a) = µ(s0), for all s0 2 S. (13.16)

Complete pseudocode for the actor–critic algorithm in the continuing case (backward
view) is given in the box below.

Actor–Critic with Eligibility Traces (continuing), for estimating ⇡✓ ⇡ ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Input: a di↵erentiable state-value function parameterization v̂(s,w)
Algorithm parameters: �w 2 [0, 1], �✓ 2 [0, 1], ↵w > 0, ↵✓ > 0, ↵R̄ > 0
Initialize R̄ 2 R (e.g., to 0)
Initialize state-value weights w 2 Rd and policy parameter ✓ 2 Rd

0
(e.g., to 0)

Initialize S 2 S (e.g., to s0)

zw 0 (d-component eligibility trace vector)
z✓ 0 (d0-component eligibility trace vector)
Loop forever (for each time step):

A ⇠ ⇡(·|S, ✓)
Take action A, observe S0, R
� R� R̄ + v̂(S0,w)� v̂(S,w)
R̄ R̄ + ↵R̄ �
zw �wzw +rv̂(S,w)
z✓ �✓z✓ +r ln ⇡(A|S, ✓)
w w + ↵w �zw

✓ ✓ + ↵✓ �z✓

S S0

334 Chapter 13: Policy Gradient Methods

Naturally, in the continuing case, we define values, v⇡(s)
.
= E⇡[Gt|St =s] and q⇡(s, a)

.
=

E⇡[Gt|St =s, At =a], with respect to the di↵erential return:

Gt

.
= Rt+1 � r(⇡) + Rt+2 � r(⇡) + Rt+3 � r(⇡) + · · · . (13.17)

With these alternate definitions, the policy gradient theorem as given for the episodic
case (13.5) remains true for the continuing case. A proof is given in the box on the next
page. The forward and backward view equations also remain the same.

Proof of the Policy Gradient Theorem (continuing case)

The proof of the policy gradient theorem for the continuing case begins similarly
to the episodic case. Again we leave it implicit in all cases that ⇡ is a function
of ✓ and that the gradients are with respect to ✓. Recall that in the continuing
case J(✓) = r(⇡) (13.15) and that v⇡ and q⇡ denote values with respect to the
di↵erential return (13.17). The gradient of the state-value function can be written,
for any s 2 S, as

rv⇡(s) = r
"
X

a

⇡(a|s)q⇡(s, a)

#
, for all s 2 S (Exercise 3.18)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)rq⇡(s, a)

i
(product rule of calculus)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)r

X

s0,r

p(s0, r |s, a)
�
r � r(✓) + v⇡(s0)

�i

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)

⇥
�rr(✓) +

X

s0

p(s0 |s, a)rv⇡(s0)
⇤i

.

After re-arranging terms, we obtain

rr(✓) =
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)

X

s0

p(s0 |s, a)rv⇡(s0)
i
�rv⇡(s).

Notice that the left-hand side can be written rJ(✓), and that it does not depend
on s. Thus the right-hand side does not depend on s either, and we can safely sum
it over all s 2 S, weighted by µ(s), without changing it (because

P
s
µ(s) = 1):

rJ(✓) =
X

s

µ(s)

X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)

X

s0

p(s0 |s, a)rv⇡(s0)
i
�rv⇡(s)

!

=
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a)

+
X

s

µ(s)
X

a

⇡(a|s)
X

s0

p(s0 |s, a)rv⇡(s0)�
X

s

µ(s)rv⇡(s)

13.7. Policy Parameterization for Continuous Actions 335

=
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a)

+
X

s0

X

s

µ(s)
X

a

⇡(a|s)p(s0 |s, a)

| {z }
µ(s0) (13.16)

rv⇡(s0)�
X

s

µ(s)rv⇡(s)

=
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a) +
X

s0

µ(s0)rv⇡(s0)�
X

s

µ(s)rv⇡(s)

=
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a). Q.E.D.

13.7 Policy Parameterization for Continuous Actions

Policy-based methods o↵er practical ways of dealing with large action spaces, even
continuous spaces with an infinite number of actions. Instead of computing learned
probabilities for each of the many actions, we instead learn statistics of the probability
distribution. For example, the action set might be the real numbers, with actions chosen
from a normal (Gaussian) distribution.

The probability density function for the normal distribution is conventionally written

p(x)
.
=

1

�
p

2⇡
exp

✓
� (x� µ)2

2�2

◆
, (13.18)

p(x)
.
=

1

�
p

2⇡
exp

✓
� (x � µ)2

2�2

◆

φ µ
,σ

2
(

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5
x

1.0

−1 0 2 4−2−4

x)

0,µ=
0,µ=
0,µ=
−2,µ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

p(x)
.
=

1

�
p

2⇡
exp

✓
� (x � µ)2

2�2

◆

where µ and � here are the mean and stan-
dard deviation of the normal distribution,
and of course ⇡ here is just the number
⇡ ⇡ 3.14159. The probability density func-
tions for several di↵erent means and stan-
dard deviations are shown to the right. The
value p(x) is the density of the probability
at x, not the probability. It can be greater
than 1; it is the total area under p(x) that
must sum to 1. In general, one can take
the integral under p(x) for any range of x
values to get the probability of x falling
within that range.

To produce a policy parameterization, the policy can be defined as the normal proba-
bility density over a real-valued scalar action, with mean and standard deviation given
by parametric function approximators that depend on the state. That is,

⇡(a|s, ✓)
.
=

1

�(s, ✓)
p

2⇡
exp

✓
� (a� µ(s, ✓))2

2�(s, ✓)2

◆
, (13.19)

where µ : S⇥Rd
0 ! R and � : S⇥Rd

0 ! R+ are two parameterized function approximators.

336 Chapter 13: Policy Gradient Methods

To complete the example we need only give a form for these approximators. For this we
divide the policy’s parameter vector into two parts, ✓ = [✓µ, ✓�]>, one part to be used
for the approximation of the mean and one part for the approximation of the standard
deviation. The mean can be approximated as a linear function. The standard deviation
must always be positive and is better approximated as the exponential of a linear function.
Thus

µ(s, ✓)
.
= ✓µ

>xµ(s) and �(s, ✓)
.
= exp

⇣
✓�

>x�(s)
⌘

, (13.20)

where xµ(s) and x�(s) are state feature vectors perhaps constructed by one of the methods
described in Section 9.5. With these definitions, all the algorithms described in the rest
of this chapter can be applied to learn to select real-valued actions.

Exercise 13.4 Show that for the Gaussian policy parameterization (Equations 13.19 and
13.20) the eligibility vector has the following two parts:

r ln ⇡(a|s, ✓µ) =
r⇡(a|s, ✓µ)

⇡(a|s, ✓)
=

1

�(s, ✓)2
�
a� µ(s, ✓)

�
xµ(s), and

r ln ⇡(a|s, ✓�) =
r⇡(a|s, ✓�)

⇡(a|s, ✓)
=

 �
a� µ(s, ✓)

�2

�(s, ✓)2
� 1

!
x�(s). ⇤

Exercise 13.5 A Bernoulli-logistic unit is a stochastic neuron-like unit used in some ANNs
(Section 9.7). Its input at time t is a feature vector x(St); its output, At, is a random
variable having two values, 0 and 1, with Pr{At = 1} = Pt and Pr{At = 0} = 1�Pt (the
Bernoulli distribution). Let h(s, 0, ✓) and h(s, 1, ✓) be the preferences in state s for the
unit’s two actions given policy parameter ✓. Assume that the di↵erence between the
action preferences is given by a weighted sum of the unit’s input vector, that is, assume
that h(s, 1, ✓)� h(s, 0, ✓) = ✓>x(s), where ✓ is the unit’s weight vector.

(a) Show that if the exponential soft-max distribution (13.2) is used to convert action
preferences to policies, then Pt = ⇡(1|St, ✓t) = 1/(1 + exp(�✓>

t
x(St))) (the logistic

function).

(b) What is the Monte-Carlo REINFORCE update of ✓t to ✓t+1 upon receipt of return
Gt?

(c) Express the eligibility r ln ⇡(a|s, ✓) for a Bernoulli-logistic unit, in terms of a, x(s),
and ⇡(a|s, ✓) by calculating the gradient.

Hint for part (c): Define P = ⇡(1|s, ✓) and compute the derivative of the logarithm, for
each action, using the chain rule on P . Combine the two results into one expression that
depends on a and P , and then use the chain rule again, this time on ✓>x(s), noting that
the derivative of the logistic function f(x) = 1/(1 + e�x) is f(x)(1� f(x)). ⇤

13.8. Summary 337

13.8 Summary

Prior to this chapter, this book focused on action-value methods—meaning methods that
learn action values and then use them to determine action selections. In this chapter, on
the other hand, we considered methods that learn a parameterized policy that enables
actions to be taken without consulting action-value estimates. In particular, we have
considered policy-gradient methods—meaning methods that update the policy parameter
on each step in the direction of an estimate of the gradient of performance with respect
to the policy parameter.

Methods that learn and store a policy parameter have many advantages. They can
learn specific probabilities for taking the actions. They can learn appropriate levels
of exploration and approach deterministic policies asymptotically. They can naturally
handle continuous action spaces. All these things are easy for policy-based methods but
awkward or impossible for "-greedy methods and for action-value methods in general. In
addition, on some problems the policy is just simpler to represent parametrically than
the value function; these problems are more suited to parameterized policy methods.

Parameterized policy methods also have an important theoretical advantage over
action-value methods in the form of the policy gradient theorem, which gives an exact
formula for how performance is a↵ected by the policy parameter that does not involve
derivatives of the state distribution. This theorem provides a theoretical foundation for
all policy gradient methods.

The REINFORCE method follows directly from the policy gradient theorem. Adding
a state-value function as a baseline reduces REINFORCE’s variance without introducing
bias. If the state-value function is also used to assess—or criticize—the policy’s action
selections, then the value function is called a critic and the policy is called an actor ;
the overall method is called an actor–critic method. The critic introduces bias into the
actor’s gradient estimates, but is often desirable for the same reason that bootstrapping
TD methods are often superior to Monte Carlo methods (substantially reduced variance).

Overall, policy-gradient methods provide a significantly di↵erent set of strengths and
weaknesses than action-value methods. Today they are less well understood in some
respects, but a subject of excitement and ongoing research.

Bibliographical and Historical Remarks

Methods that we now see as related to policy gradients were actually some of the earliest
to be studied in reinforcement learning (Witten, 1977; Barto, Sutton, and Anderson,
1983; Sutton, 1984; Williams, 1987, 1992) and in predecessor fields (see Phansalkar
and Thathachar, 1995). They were largely supplanted in the 1990s by the action-value
methods that are the focus of the other chapters of this book. In recent years, however,
attention has returned to actor–critic methods and to policy-gradient methods in general.
Among the further developments beyond what we cover here are natural-gradient methods
(Amari, 1998; Kakade, 2002, Peters, Vijayakumar and Schaal, 2005; Peters and Schaal,
2008; Park, Kim and Kang, 2005; Bhatnagar, Sutton, Ghavamzadeh and Lee, 2009; see
Grondman, Busoniu, Lopes and Babuska, 2012), deterministic policy-gradient methods

338 Chapter 13: Policy Gradient Methods

(Silver et al., 2014), o↵-policy policy-gradient methods (Degris, White, and Sutton, 2012;
Maei, 2018), and entropy regularization (see Schulman, Chen, and Abbeel, 2017). Major
applications include acrobatic helicopter autopilots and AlphaGo (Section 16.6).

Our presentation in this chapter is based primarily on that by Sutton, McAllester,
Singh, and Mansour (2000), who introduced the term “policy gradient methods.” A
useful overview is provided by Bhatnagar et al. (2009). One of the earliest related works
is by Aleksandrov, Sysoyev, and Shemeneva (1968). Thomas (2014) first realized that
the factor of �t, as specified in the boxed algorithms of this chapter, was needed in the
case of discounted episodic problems.

13.1 Example 13.1 and the results with it in this chapter were developed with Eric
Graves.

13.2 The policy gradient theorem here and on page 334 was first obtained by Marbach
and Tsitsiklis (1998, 2001) and then independently by Sutton et al. (2000). A
similar expression was obtained by Cao and Chen (1997). Other early results
are due to Konda and Tsitsiklis (2000, 2003), Baxter and Bartlett (2001), and
Baxter, Bartlett, and Weaver (2001). Some additional results are developed by
Sutton, Singh, and McAllester (2000).

13.3 REINFORCE is due to Williams (1987, 1992). Phansalkar and Thathachar
(1995) proved both local and global convergence theorems for modified versions
of REINFORCE algorithms.

The all-actions algorithm was first presented in an unpublished but widely
circulated incomplete paper (Sutton, Singh, and McAllester, 2000) and then
developed further by Ciosek and Whiteson (2017, 2018), who termed it “expected
policy gradients,” and by Asadi, Allen, Roderick, Mohamed, Konidaris, and
Littman (2017), who called it “mean actor critic.”

13.4 The baseline was introduced in Williams’s (1987, 1992) original work. Greensmith,
Bartlett, and Baxter (2004) analyzed an arguably better baseline (see Dick, 2015).
Thomas and Brunskill (2017) argue that an action-dependent baseline can be
used without incurring bias.

13.5–6 Actor–critic methods were among the earliest to be investigated in reinforcement
learning (Witten, 1977; Barto, Sutton, and Anderson, 1983; Sutton, 1984). The
algorithms presented here are based on the work of Degris, White, and Sutton
(2012). Actor–critic methods are sometimes referred to as advantage actor–critic
(“A2C”) methods in the literature.

13.7 The first to show how continuous actions could be handled this way appears
to have been Williams (1987, 1992). The figure on page 335 is adapted from
Wikipedia.

